000032986 001__ 32986
000032986 005__ 20240711113510.0
000032986 0247_ $$2WOS$$aWOS:000220595000038
000032986 0247_ $$2Handle$$a2128/2723
000032986 037__ $$aPreJuSER-32986
000032986 041__ $$aeng
000032986 082__ $$a530
000032986 084__ $$2WoS$$aNuclear Science & Technology
000032986 1001_ $$0P:(DE-Juel1)VDB3729$$aRogister, A.$$b0$$uFZJ
000032986 245__ $$aLow frequency instabilities in confined plasmas, concepts and theoretical framework
000032986 260__ $$aLa Grange Park, Ill.$$bAmerican Nuclear Society$$c2004
000032986 300__ $$a338 - 345
000032986 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032986 3367_ $$2DataCite$$aOutput Types/Journal article
000032986 3367_ $$00$$2EndNote$$aJournal Article
000032986 3367_ $$2BibTeX$$aARTICLE
000032986 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032986 3367_ $$2DRIVER$$aarticle
000032986 440_0 $$08121$$aFusion Science and Technology$$v45$$x1536-1055$$y2T
000032986 500__ $$aRecord converted from VDB: 12.11.2012
000032986 520__ $$aMost experts consider that anomalous energy and particle transport in fusion devices are due to low frequency waves whose free energy sources are the equilibrium gradients and the associated drifts across the confining magnetic field (drift waves). We consider successively the cases where k(\\)qR much greater than 1 and k(\\)qR similar to 1 where k(\\) is the parallel wave number, qR being the connection length. The first limit is particularly adequate if the gradient of the parallel flow velocity is significant; exact stability criteria are then obtained with the help of the Nyquist diagram in the framework of the local dispersion relation which applies. That is not the case if k(\\)qR similar to 1 : here, the stability analysis leads to second order differential equations whose complex eigenvalues provide the wave frequencies and the growth/decay rates. The theoretical concepts are developed successively for cylindrical and axi-symmetric toroidal geometries. Electrons are considered to be adiabatic.
000032986 536__ $$0G:(DE-Juel1)FUEK250$$2G:(DE-HGF)$$aKernfusion und Plasmaforschung$$cE05$$x0
000032986 588__ $$aDataset connected to Web of Science
000032986 650_7 $$2WoSType$$aJ
000032986 773__ $$0PERI:(DE-600)2132501-7$$gVol. 45, p. 338 - 345$$p338 - 345$$q45<338 - 345$$tFusion science and technology$$v45$$x1536-1055$$y2004
000032986 8564_ $$uhttps://juser.fz-juelich.de/record/32986/files/36949.pdf$$yOpenAccess
000032986 8564_ $$uhttps://juser.fz-juelich.de/record/32986/files/36949.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000032986 8564_ $$uhttps://juser.fz-juelich.de/record/32986/files/36949.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000032986 8564_ $$uhttps://juser.fz-juelich.de/record/32986/files/36949.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000032986 909CO $$ooai:juser.fz-juelich.de:32986$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000032986 9131_ $$0G:(DE-Juel1)FUEK250$$bEnergie$$kE05$$lKernfusion und Plasmaforschung$$vKernfusion und Plasmaforschung$$x0
000032986 9141_ $$y2004
000032986 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032986 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000032986 9201_ $$0I:(DE-Juel1)VDB181$$d31.12.2006$$gIPP$$kIPP$$lInstitut für Plasmaphysik$$x0
000032986 970__ $$aVDB:(DE-Juel1)36949
000032986 9801_ $$aFullTexts
000032986 980__ $$aVDB
000032986 980__ $$aJUWEL
000032986 980__ $$aConvertedRecord
000032986 980__ $$ajournal
000032986 980__ $$aI:(DE-Juel1)IEK-4-20101013
000032986 980__ $$aUNRESTRICTED
000032986 980__ $$aFullTexts
000032986 981__ $$aI:(DE-Juel1)IFN-1-20101013
000032986 981__ $$aI:(DE-Juel1)IEK-4-20101013