000032998 001__ 32998
000032998 005__ 20180210131220.0
000032998 0247_ $$2pmid$$apmid:12721678
000032998 0247_ $$2DOI$$a10.1007/s00425-003-1041-4
000032998 0247_ $$2WOS$$aWOS:000185674000012
000032998 037__ $$aPreJuSER-32998
000032998 041__ $$aeng
000032998 082__ $$a580
000032998 084__ $$2WoS$$aPlant Sciences
000032998 1001_ $$0P:(DE-HGF)0$$aSiebrecht, S.$$b0
000032998 245__ $$aNutrient translocation in the xylem of popular - diurnal variations and spatial distribution along the shoot axis
000032998 260__ $$aBerlin$$bSpringer$$c2003
000032998 300__ $$a783 - 793
000032998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000032998 3367_ $$2DataCite$$aOutput Types/Journal article
000032998 3367_ $$00$$2EndNote$$aJournal Article
000032998 3367_ $$2BibTeX$$aARTICLE
000032998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000032998 3367_ $$2DRIVER$$aarticle
000032998 440_0 $$04992$$aPlanta$$v217$$x0032-0935
000032998 500__ $$aRecord converted from VDB: 12.11.2012
000032998 520__ $$aThis investigation shows diurnal variations in the xylem sap composition of poplar (Populus tremula x P. alba). All major macronutrients reached a maximum concentration in the first half of the light period and decreased to the middle of the night. The relative abundance of the nutrients did not change during the day. The sap flow, which responded very fast to the environmental changes (2.2-fold increase within 10-20 min of illumination), reached a maximum value in the second half of the light period. Transpiration (and photosynthesis) was constant throughout the light phase. The calculated translocation rates displayed a maximum in the first half of the light period and therefore did not fit the time course of sap flow. During the night, translocation rates were 63-69% lower than the maximum. The regulation of nutrient translocation is discussed taking the active xylem loading into account. The axial distribution located the nitrate assimilation in younger leaves and storage of nitrate (and other macronutrients) in older leaves. Nitrate and potassium concentrations in the xylem sap did not change along the plant axis. However, the sap flow was greater in younger shoot sections than in older sections. We assume that the greater demand for nitrate in the younger shoot section was satisfied via an increased volume flow rather an increased nitrate concentration.
000032998 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000032998 588__ $$aDataset connected to Web of Science, Pubmed
000032998 650_2 $$2MeSH$$aBiological Transport: physiology
000032998 650_2 $$2MeSH$$aBiological Transport: radiation effects
000032998 650_2 $$2MeSH$$aCalcium: metabolism
000032998 650_2 $$2MeSH$$aChlorides: metabolism
000032998 650_2 $$2MeSH$$aCircadian Rhythm: physiology
000032998 650_2 $$2MeSH$$aLight
000032998 650_2 $$2MeSH$$aMagnesium: metabolism
000032998 650_2 $$2MeSH$$aNitrate Reductase
000032998 650_2 $$2MeSH$$aNitrate Reductases: metabolism
000032998 650_2 $$2MeSH$$aNitrates: metabolism
000032998 650_2 $$2MeSH$$aPhotosynthesis: physiology
000032998 650_2 $$2MeSH$$aPhotosynthesis: radiation effects
000032998 650_2 $$2MeSH$$aPlant Shoots: physiology
000032998 650_2 $$2MeSH$$aPlant Shoots: radiation effects
000032998 650_2 $$2MeSH$$aPlant Transpiration: physiology
000032998 650_2 $$2MeSH$$aPlant Transpiration: radiation effects
000032998 650_2 $$2MeSH$$aPopulus: physiology
000032998 650_2 $$2MeSH$$aPopulus: radiation effects
000032998 650_2 $$2MeSH$$aPotassium: metabolism
000032998 650_2 $$2MeSH$$aQuaternary Ammonium Compounds: metabolism
000032998 650_2 $$2MeSH$$aSodium: metabolism
000032998 650_2 $$2MeSH$$aSulfates: metabolism
000032998 650_7 $$00$$2NLM Chemicals$$aChlorides
000032998 650_7 $$00$$2NLM Chemicals$$aNitrates
000032998 650_7 $$00$$2NLM Chemicals$$aQuaternary Ammonium Compounds
000032998 650_7 $$00$$2NLM Chemicals$$aSulfates
000032998 650_7 $$07439-95-4$$2NLM Chemicals$$aMagnesium
000032998 650_7 $$07440-09-7$$2NLM Chemicals$$aPotassium
000032998 650_7 $$07440-23-5$$2NLM Chemicals$$aSodium
000032998 650_7 $$07440-70-2$$2NLM Chemicals$$aCalcium
000032998 650_7 $$0EC 1.7.-$$2NLM Chemicals$$aNitrate Reductases
000032998 650_7 $$0EC 1.7.99.4$$2NLM Chemicals$$aNitrate Reductase
000032998 650_7 $$2WoSType$$aJ
000032998 65320 $$2Author$$adiurnal variation (xylem sap)
000032998 65320 $$2Author$$anitrate
000032998 65320 $$2Author$$anutrient translocation
000032998 65320 $$2Author$$aPopulus
000032998 65320 $$2Author$$axylem
000032998 7001_ $$0P:(DE-HGF)0$$aHerdel, K.$$b1
000032998 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b2$$uFZJ
000032998 773__ $$0PERI:(DE-600)1463030-8$$a10.1007/s00425-003-1041-4$$gVol. 217, p. 783 - 793$$p783 - 793$$q217<783 - 793$$tPlanta$$v217$$x0032-0935$$y2003
000032998 8567_ $$uhttp://dx.doi.org/10.1007/s00425-003-1041-4
000032998 909CO $$ooai:juser.fz-juelich.de:32998$$pVDB
000032998 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000032998 9141_ $$y2003
000032998 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000032998 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000032998 970__ $$aVDB:(DE-Juel1)37045
000032998 980__ $$aVDB
000032998 980__ $$aConvertedRecord
000032998 980__ $$ajournal
000032998 980__ $$aI:(DE-Juel1)IBG-2-20101118
000032998 980__ $$aUNRESTRICTED
000032998 981__ $$aI:(DE-Juel1)IBG-2-20101118
000032998 981__ $$aI:(DE-Juel1)ICG-3-20090406