000003305 001__ 3305
000003305 005__ 20180208223402.0
000003305 0247_ $$2DOI$$a10.1016/S0039-6028(02)02681-X
000003305 0247_ $$2WOS$$aWOS:000181571000017
000003305 037__ $$aPreJuSER-3305
000003305 041__ $$aeng
000003305 082__ $$a540
000003305 084__ $$2WoS$$aChemistry, Physical
000003305 084__ $$2WoS$$aPhysics, Condensed Matter
000003305 1001_ $$0P:(DE-Juel1)VDB5526$$aJeliazova, Y.$$b0$$uFZJ
000003305 245__ $$aGrowth of ultra thin Ga and Ga2O3 films on Ni(100)
000003305 260__ $$aAmsterdam$$bElsevier$$c2003
000003305 300__ $$a57
000003305 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000003305 3367_ $$2DataCite$$aOutput Types/Journal article
000003305 3367_ $$00$$2EndNote$$aJournal Article
000003305 3367_ $$2BibTeX$$aARTICLE
000003305 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000003305 3367_ $$2DRIVER$$aarticle
000003305 440_0 $$05673$$aSurface Science$$v527$$x0039-6028
000003305 500__ $$aRecord converted from VDB: 12.11.2012
000003305 520__ $$aThe growth of ultra-thin films of Ga2O3 on Ni(1 0 0) was investigated in the temperature range of 300-800 K by using Auger electron spectroscopy, low energy electron diffraction (LEED) and scanning tunneling microscopy. In addition, the growth of Ga at 300 K was also studied. For the formation of Ga2O3, first at 300 K, a 15 Angstrom thick Ga layer was deposited on the Ni(1 0 0) surface. Oxygen adsorption until saturation leads to the formation of a thin amorphous Ga oxide on the top of a metallic Ga interlayer. Annealing up to 700 K leads to the formation of a well-ordered thin film of gamma'-Ga2O3 which is accompanied by a coalescence and ordering of the Ga2O3 islands. Large terraces are found which are separated by step heights of 2 Angstrom. The LEED pattern shows a 12-fold ring structure, which originates from two domains with hexagonal structure, which are rotated by 90degrees with respect to each other. The lattice constant of the hexagonal unit cells is determined to be 2.8 Angstrom. (C) 2003 Elsevier Science B.V. All rights reserved.
000003305 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000003305 588__ $$aDataset connected to Web of Science
000003305 650_7 $$2WoSType$$aJ
000003305 65320 $$2Author$$agallium
000003305 65320 $$2Author$$anickel
000003305 65320 $$2Author$$aauger electron spectroscopy
000003305 65320 $$2Author$$alow energy electron diffraction (LEED)
000003305 65320 $$2Author$$ascanning tunneling microscopy
000003305 65320 $$2Author$$asurface structure, morphology, roughness, and topography
000003305 7001_ $$0P:(DE-Juel1)VDB5400$$aFranchy, R.$$b1$$uFZJ
000003305 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/S0039-6028(02)02681-X$$gVol. 527, p. 57$$p57$$q527<57$$tSurface science$$v527$$x0039-6028$$y2003
000003305 8567_ $$uhttp://dx.doi.org/10.1016/S0039-6028(02)02681-X
000003305 909CO $$ooai:juser.fz-juelich.de:3305$$pVDB
000003305 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000003305 9141_ $$y2003
000003305 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000003305 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000003305 970__ $$aVDB:(DE-Juel1)10902
000003305 980__ $$aVDB
000003305 980__ $$aConvertedRecord
000003305 980__ $$ajournal
000003305 980__ $$aI:(DE-Juel1)PGI-3-20110106
000003305 980__ $$aUNRESTRICTED
000003305 981__ $$aI:(DE-Juel1)PGI-3-20110106