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Abstract 
 

Humic substances modify the surface of inorganic soil constituents changing 

the nature and amount of adsorption sites for contaminants and also 

influencing the particle-particle interactions and thus the mobility and transport 

behavior of the soil particles. The aim of this PhD work was to investigate the 

effects of the interactions between two important soil components, aluminum 

oxide and humic acid, on the sorption behavior of 2,4-dichlorophenol under 

laboratory conditions selected to model the soil systems. 

 

Humic acid is very heterogeneous in terms of physical and chemical 

properties. To reduce the chemical heterogeneity of the extracted humic acid 

(from the Ap horizon of the Orthic Luvisol, Merzenhausen, Germany), a 

fractionation scheme using the ultrafiltration technique was used to obtain 

eight size fractions of the humic acid. The extracted humic acid and its 

fractions were characterized by potentiometric acid-base titration, elemental 

analysis and different spectroscopic methods (NMR, UV-VIS and FT-IR 

spectroscopy). Clear chemical differences between the humic acid size 

fractions were observed. Smaller size fractions of the soil humic acid 

contained more chargeable functional groups and larger percentage of 

aromatic carbon than the larger size fractions. Conversely, the percentage of 

aliphatic carbon increased with increasing apparent molecular weight. 

Moreover, the solid-state 19F-NMR was used to study the sorptive uptake of 

hexafluorobenzene by the humic acid and its fractions. It was found that 

humic acid molecules have different chemical environments into which 

organic pollutant such as hexafluorobenzene can sorb. Small humic acid 

molecules have at least three sorption sites (“rigid”, “soft” and other new 

domains) that are more clearly defined and homogeneous than the sorption 

domains found in larger humic acid molecules. 

 

The effect of the pH and the electrolyte concentration on the adsorption of the 

humic acid onto alumina surfaces as well as on the colloidal stability of these 

systems were studied. To better understand the binding mechanisms these 



results were also compared to those of polyacrylic acid. The adsorption of 

humic acid or polyacrylic acid to alumina varied with pH and electrolyte 

concentration, suggesting that the conformation of the humic acid or 

polyacrylic acid in solution significantly determines their structures on the 

mineral surface. At low pH (< point of zero charge (PZC) of alumina), 

increasing amounts of humic acid or polyacrylic acid are adsorbed on the 

alumina surface with increasing concentrations of solutes, resulting in a 

charge reversal from positive to negative net total particle charge whilst at 

high pH (> PZC), the electrophoretic mobility was shifted to more negative 

values. The colloidal stability of the alumina dispersions containing increasing 

amounts of the added humic acid and polyacrylic acid, respectively, was 

monitored using the dynamic light scattering technique. The maximum 

aggregate size was observed around the zero electrophoretic mobility, 

indicating the importance of the charge neutralization mechanism. 

 

By comparing the adsorption of the humic acid fractions on alumina surfaces, 

it was found that the adsorbed amount increases with increasing humic acid 

molecular size. Furthermore, an increase in the rise of the adsorption 

isotherm in the plateau regions by increasing the humic acid fraction size was 

also observed which indicates a higher contribution of the hydrophobic 

interactions due to the increase in the aliphatic carbon and the decrease in 

the chargeable groups. 

 

The sorption results of 2,4-dichlorophenol on the immobilized humic acid at 

different pH and salt concentrations revealed that the value of the sorption 

coefficient decreases as the ionic strength decreases or the pH value 

increases which gives direct evidence for the importance of the conformation 

of the immobilized HA. These sorption isotherms can be described as a linear 

isotherm, which indicates that the sorption of 2,4-dichlorophenol is 

predominantly a partitioning process between the aqueous phase and the 

immobilized humic acid. 
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 
 
1 Introduction 
 

Humans have always built up their own order at the expense of some order in 

the environment; in recent history, however, they have multiplied destruction 

of environmental order to build up increasingly intricate structure of cultural 

and technical civilization (1). Increasing development of civilization has always 

been a primary driving force for humans, and has been particularly enhanced 

by men’s unmatched ability to exploit natural resources. However, it has 

become evident in the past years that industrial and economic growth has not 

been without environmental cost (2). The development of cultural and 

technical civilization has been marked with increasing interference in 

hydrogeochemical cycles (3). As humans increasingly have disrupted the 

cycles connecting the soil, water and atmosphere, the ratio of pollutant fluxes 

to natural fluxes has multiplied. 

 

What is pollution? People usually have a limited (typically egocentric) concept 

of what constitutes pollution. In a very broad sense, however, pollution is the 

alteration by humans of our surroundings in such a way that they become 

unfavorable to present ecosystems. Thus, pollution adversely affects not only 

people, but also causes other environmental catastrophes such as loss of 

species and diversity. This characterization implies that pollution not only 

results from addition of contaminants directly into the environment, but also 

from other direct or indirect consequences of human activity.  

 

Over the last decades soil pollution has been recognized as a major topic of 

concern. Every now and then, pollution of the natural environment with for 

example heavy metal ions, fertilizers, and pesticides has been reported (4-8). 

The uptake of contaminants by living organisms mostly occurs by exposure to 

dissolved species. Plants are exposed to pollutants in the soil by their roots 

and animals mainly by drinking contaminated water (including contaminants 

bound to the dissolved soil components) or indirectly by eating contaminated 

plants or animals. Thus the concentration of the contaminants in the aqueous 

phase is of prime importance. These aqueous concentrations are affected by 

1 
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soil factors such as pH, mineral oxide, clay, and organic matter content and 

the content of the toxic species. Further it is well known that the soil can 

immobilize toxic chemicals by precipitation, adsorption or (bio)transformation 

and that the soil acts as a buffer. The buffer capacity of the natural 

environment strongly influences the impact of toxic chemicals. Buffering in this 

sense is described as storage of the chemicals without a direct effect of these 

chemicals on the toxicity experienced at the contaminated site. Exceedance 

of this capacity may be harmful to the ecosystem because it implies an 

increased transport and an increased bio-availability of the toxic chemicals. 

 

It has been generally recognized that not the overall concentration of a 

pollutant controls the toxicity of the contaminated site, but that the 

concentration of the different speciation forms of a pollutant and the bio-

availability of each of the different species have to be considered. Besides the 

local interactions between contaminants and the soil components the 

transport of the dissolved species due to the soil water dynamics is an 

important factor when studying the risks associated with contaminated sites. 

Contaminants can be transported by the ground water. The species bound to 

the soil components that are soluble and transportable by the aqueous phase 

are considered as mobile. Species bound to the non-dissolvable or settled 

particles and the material bound to these particles belong to the immobile soil 

fraction. The transport of contaminants that bind strongly to the mobile soil 

components may be enhanced in the environment, this phenomenon is known 

as colloid facilitated transport. Binding of contaminants to the different soil 

components has often been recognized as a process which controls the bio-

availability of the contaminants and affects the risks associated with the 

contamination (9). For example hydrophobic pesticides may be captured in 

the hydrophobic cavities of the humic substances (10) and thus the transport 

of these hydrophobic molecules is related to that of the organic matter. It was 

pointed out that, due to the partly hydrophobic structure of the humic material, 

adsorption of other hydrophobic organic compounds (HOCs) to the soil matrix 

was increased (9). Humic acids are generally more hydrophobic than the 

fulvic acids, thus the speciation of hydrophobic pollutants may be related to 

that of humic acid fraction. Adsorption of the humic acids will thus immobilize 

2 
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the hydrophobic pollutants and the adsorbed humic matter also plays an 

important role in contaminant binding to mineral particles (9).  

3 
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2 Outline of this thesis 
 

The aim of the present study was to investigate the effects of the interactions 

between two important soil components, mineral oxides and humic 

substances, on the sorption of HOCs under laboratory conditions selected to 

model the soil systems. An understanding of sorption mechanisms, therefore, 

is an important key to describe the fate of HOC in the environment because 

sorption reactions directly affect the mobility, chemical reactivity, 

bioavailability, and toxicity of hydrophobic compounds. The model system 

used in this study consisted of aluminum oxide and an extracted soil humic 

acid. 2,4-Dichlorophenol (2,4-DCP) was taken as a hydrophobic organic 

compound contaminant model because of its wide distribution due to 

anthropogenic inputs from industrial wastes. 

 

To achieve this aim throughout this work the following major topics were 

studied: 

 

• The HA was fractionated by the ultrafiltration technique (UF) to reduce 

the HA’s chemical heterogeneity. The size-fractioned humic acids 

obtained from the UF fractionation were characterized by different 

spectroscopic methods (13C-NMR, UV-VIS and FT-IR spectroscopy) to 

give more identification of differences in chemical structures and the 

functional groups of these macromolecules. The sorption of the 

Hexafluorobenzene (HFB) probe molecule was observed via solid-state 
19F-NMR to obtain data about the local chemical environments of HA 

sorption domains. The sorption data were correlated with the other 

characterization data for each fraction to determine what chemical 

moieties in HA are responsible for the observed sorption domains. 

• The adsorption of humic acid and its fractions onto the alumina 

particles was studied (Fig. 2.1, reaction 2). The effects of solution 

conditions (pH and salt concentration) on the adsorption were 

discussed. To better understand the binding mechanisms these results 

were also compared to those of polyacrylic acid (PAA). 

4 



Chapter 2                                                                                        OUTLINE OF THIS THESIS 
 

 
• The HA was immobilized by adsorbing it on alumina to form a HA/Al2O3 

complex. The sorption of 2,4-DCP onto the HA/Al2O3 complexes at 

different pH and salt concentrations was investigated (Fig. 2.1, reaction 

4). 

 

A A

H H

HA + A H

AH A

A

H

A H

= 2,4-DCP

= Humic acid (HA)

= 2,4-DCP/HA complex

= Al2O3

(1)

(2)

(3)

(4)

 

Fig. 2.1.  Mechanisms of interaction between  Al2O3,  humic  acid  and 
2,4-DCP [after Ref. (11)]. 

 

5 
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3 Theoretical background 
 

3.1 Humic substances in the environment 
 

The terminology of humic chemistry has a long history dating from the early 

work of Achard (1786) who extracted peat with alkali to yield a dark precipitate 

that we would now call “humic substances”. Humic substances (HSs) are 

found in all soils and waters that contain organic matter (OM) (12). HSs are 

the result of biological and chemical processes, and the amounts generated in 

soil are several times greater than those in waters. Labile plant materials 

decompose rapidly on entering aerobic soil environments with adequate water 

supplies, but more resistant components transform slowly in the same 

environment. Because of the compositional diversities and the differences in 

the transformation modes of the components, it is impossible to define the 

gross mixtures that compose soil organic matter (SOM), or the dissolved 

organic matter (DOM), or the particulate organic matter (POM) of waters. 

 

Fig. 3.1.  Diagram of the many possible environmental flowpaths of humic 
substances (12). 

6 
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The diagram in Figure 3.1 shows the different flowpaths of the dissolved 

humic substances in the natural environment. Figure 3.1 further indicates that 

all humic substances are interconnected through the medium of water, and 

that it is primarily by means of water that these substances are transported in 

the environment. Soil and peat humic substances found in the different 

terrestrial systems may leach into the groundwater and can be transported 

until they settle in one of the sediments. The composition of the different 

ecosystems is controlled by a net balance of formation, degradation, and 

transfer of the humics (4, 13, 14). The contribution of the latter to this balance 

is relatively small although it can not be neglected (15, 16). 

 

The classical definitions of HSs are operational and based on aqueous 

solubility. Aiken et al. (12) state that humic substances are “a general 

category of naturally occurring heterogeneous organic substances that can 

generally be characterized as being yellow to black in color, of high molecular 

weight, and refractory”. Hays and Swift (17), considered humic substances to 

be the amorphous, macromolecular, brown-colored components of soil 

organic matter which bear no morphological resemblances to the plant or 

animal tissues from which they were derived, and which can be differentiated 

into broad general classes on the basis of solubility differences in aqueous 

acids and bases. 

 

Soil humic substances play many different vital roles in the soil. Humic 

substances form stable bridges between cations and mineral grains resulting 

in the crumb structure found in fertile soils (4, 18). It is the crumb structure 

which allows water and air to permeate the top layer of soil enhancing the 

potential for the growth of significant vegetation. Humic substances also have 

a large capacity for the retention of water and can release stored water to 

plants during brief drought conditions (19). Ionized carboxylic groups in the 

soil humus electrostatically adsorb many micronutrients and function as 

buffers for those ions, storing and releasing them to plant systems through 

basic equilibrium processes. In addition to acting as ion buffers, carboxylic 

groups, and to a lesser extent, phenolic and amino acid groups, act as 

7 
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hydronium ion buffers resulting in stable pH ranges conducive for plant and 

microbial growth.  

 

Many authors list properties of HSs that are important for soil conservation 

and for crop growth (4, 17, 18). Even though the SOM composition of mineral 

soils is usually in the range of 1-5%, it would not be possible to achieve the 

agricultural productivity that is needed to sustain the world population in its 

absence. Humus can be more than 90% of the SOM. SOM is vital to the 

formation and stabilization of soil aggregates, and Swift (19) has outlined how 

polysaccharides and HSs have different roles in the formation and in the 

stabilization, respectively, of the aggregates. 

 

HSs are important as cation exchangers, in the release of plant nutrients 

(especially N, P, and S) when mineralized, and in the binding of 

anthropogenic organic chemicals. The biological activity of most aromatic 

anthropogenic organic chemicals is decreased or lost on contact which HSs, 

and HSs in waters are not hazardous to health. Some research indicates that 

HSs have healing effect (20). However, dissolved HSs are chlorinated during 

water treatment, and the products can have deleterious health effects (21, 

22).  

 

3.2 Extraction and separation of soil humic substances 
 
Humic materials are traditionally divided into three operationally defined 

fractions based on their solubility in aqueous solutions at different pH values 

(12, 13, 17, 23-24). Humic and fulvic acids are traditionally extracted from 

soils and sediment samples as the sodium salts by using sodium hydroxide 

solution. The material that remains contains the insoluble humin fraction 

(Figure 3.2). Fulvic acid is defined as the “fraction of humic substances that is 

soluble under all pH conditions”, humic acid is “the fraction of HSs that is not 

soluble in water under acid conditions but becomes soluble at greater pH”, 

and humin is defined as “that fraction of HSs that is not soluble in water at any 

pH value”. 

8 
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HUMUS

(insoluble)

Humin

(soluble)

(precipitated)

Humic Acid
(not precipitated)

Fulvic Acid

treat with acid

extract with alkali

decrease in acidity, oxygen 
content and degree of solubility

increase in intensity of colour
increase in degree of polymerization

increase in molecular weight
increase in carbon content

 
Fig. 3.2.  Scheme for the fractionation of soil organic matter (humus) [after 

Ref. (4)] and the general properties of these fractions [after Ref. 
(25)] . 

 

 

Fulvic acid has the highest carboxylic content of the three humic fractions 

resulting in its high water solubility. It also has the lowest average molecular 

weight with typical weights ranging between 300 to 1200 daltons (14, 26). The 

relative ratio of fulvic acid to humic acid as found in soils ranges between 0.4 

to 3.3 (4) 

 

Humic acid has lower carboxylic content as well as much higher molecular 

weights than fulvic acid which makes it largely insoluble in acidic solutions. It 

is only under basic to neutral conditions fully water soluble, when a large 

number of the acidic groups are ionized. Reported molecular weights for 

humic acid vary widely based on the technique used for separation and have 

a reported range from 1,000 to 200,000 Daltons (14). 

 

Humin typically represents more than 50% of the total organic carbon of soils 

(14, 27, 28). However, it is the least studied of the fractions (29, 30), primarily 

due to the difficulty in separating it from the inorganic matrix and its insolubility 
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in aqueous solutions. The elemental and functional group composition of 

humin has been shown to be similar to that found in humic acid (14). 

 

3.3  The structural concepts of humic acid 
 
An extremely wide variety of different diagenetic processes and biologically 

derived starting materials are responsible for the formation of humic materials 

(31-33). The varied combinations of starting materials and reaction 

mechanisms involved in the humification process produces a very large 

number of different molecular species. These molecules are different both in 

functional group distribution and molecular size. Humic acid (HA) is the 

alkaline soluble, acid insoluble fraction of humic materials and is itself a 

complex mixture. Observations show that the specific range of functional 

groups and properties displayed by HA is strongly influenced by it’s genesis 

and degree of humification (34). Generally, the properties of HA are the result 

of the interactions of a great variety of aliphatic, aromatic, carbohydrate, and 

amino substructures irregularly connected together and substituted by a broad 

spectrum of functional groups. These molecules form three-dimensional 

networks having considerable aromatic and aliphatic functionality which have 

been shown to contain inter- and intramolecular hydrophobic domains of 

various size (35, 36). These hydrophobic domains are an important 

consideration for hydrophobic organic compound (HOC) transport because 

they have been shown to allow HOC inclusion (36). 

 

Unfortunately an unified structure of humic acid (macro)molecules does not 

exist. Therefore the structure and the geometry of the molecules always has 

to be approximated. To study the adsorption of these natural polyelectrolytes 

and the conformation of the adsorbed molecules and that of the molecules in 

solution a model would be appropriate. Several models have been proposed 

to describe the humics (13). The most  frequently  cited  structures  are  those 

described by Ghosh and Schnitzer (37) and Cameron et al. (38). 

Computational analytical chemistry has been used to calculate a three 

dimensional structure of humic substances (39). These calculations resulted 
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in a more or less spherical structure with a significant amount of space within 

the boundary of the humic acid entities. 

 
Schulten and Schnitzer (36) developed a schematic structure for humic acid 

based on 13C-NMR, analytical pyrolysis, and oxidative degradation data. The 

structure (Fig. 3.3) consists of aromatic rings linked by long-chain alkyl 

structures so as to form a flexible network containing voids that trap and bind 

other organic components. Both COOH and OH groups are present in 

abundance, and they occupy positions on both the aromatic ring and aliphatic 

side chains. 

 
Fig. 3.3.  Chemical network structure of humic acid. Adopted from 

Schulten and Schnitzer (36). 
 

 

3.4 Polyelectrolyte properties of humic acids 
 

Based on the structural features of humic substances, humic acids molecules 

are often described as fairly flexible polyelectrolytes (37, 38, 40-42). Chen and 

Schnitzer (40) mentioned that humic and fulvic acids behave like flexible, 
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linear, synthetic polyelectrolytes, and concluded that the humics are not 

exclusively composed of condensed ring, but that there must be numerous 

linkages about which relatively free rotation occurs. Ghosh and Schnitzer (37) 

showed that humic acids can be described as flexible linear colloids under the 

conditions that normally prevail in natural soils. Cameron et al. (38) visualized 

the humic acid molecules in solution as a series of charged, occasionally 

branched strands. They concluded that the strands coil and wind randomly 

with respect to both space and time so that the mean distribution of molecular 

mass is spherical and Gaussian about the center. Branching results in an 

increased coil density within the molecule giving rise to more compact 

spheres compared with a linear molecule of equivalent weight. They 

described the humic acid molecules as a structure that is perfused with 

solvent molecules which are able to exchange with bulk solvent molecules.  

 
3.5 Fractionation of humic acid 
 

The molecular size of HAs are reported to range from several hundred to 

several hundred thousand Daltons (Da). In addition, the observed chemical 

structures show no clear repetitive pattern (43-45). Extremely wide ranges of 

characteristics are common among complicated mixtures, such as HAs. Few 

studies are available on the chemical heterogeneity of HAs in relation to 

molecular size distribution (46-52). The results of the studies published to 

date are somewhat contradictory. However, they do seem to suggest that 

chemical composition varies with molecular size and that differences in the 

chemical composition between size fractions may have significant 

consequences on the environmental chemistry and geochemistry of humic 

substances. In general, the low molecular weight humic fractions are 

expected to be more hydrophilic and mobile in soils and groundwater than the 

high molecular weight, hydrophobic fractions (53).  

 

In the case of soil HA, the most valid argument for their fractionation is the 

fact that many interactions and processes of HA in the environment can be 

more or less dependent on their molecular size, for instance their binding 

capability towards pollutants (54) and  their  sorption  behaviour  onto  mineral  
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surfaces (55). Among the fractionation methods available, ultrafiltration (UF) 

using different suitable membrane filters is a reasonably simple method to 

differentiate polydisperse mixtures of molecules (44, 45). Therefore, molecular 

size fractionation and classification of HA by UF (56), performed under 

reproducible and reliable conditions (57), enables such processes to be 

differentiated as a function of their molecular size. 

 

Ultrafiltration is one of the few separation methods functioning without 

additional separation media and auxiliary reagents, thus avoiding blank 

substances as interferents. The simple and reliable scale-up of UF from the 

micro to the macro dimension in commercial UF units, which allows the rapid 

fractionation of relatively large quantities of humic acid, is another relevant 

advantage of this separation method (45).  

 

3.6  Adsorption isotherms 
 

The mineral and organic surfaces of soils (referred here as the adsorbent) 

may adsorb solute molecules (the adsorptive) weakly or strongly depending 

on the strength of the adsorbate-adsorbent interaction. Strong interaction is 

indicative of chemical adsorption, or chemisorption, in which a covalent or 

short-range electrostatic bond forms between the molecule and the surface. 

Weak adsorption, on the other hand, is characteristic of physical adsorption, 

in which the bonding interaction is not very energetic. 

 

Adsorption data are most commonly represented by an adsorption isotherm, 

which is a plot of the quantity of adsorptive retained by a solid (the adsorbate) 

as a function of the concentration of that adsorbate in the bathing solution 

phase that is at equilibrium with the solid. The shape of this isotherm line 

suggests information about the adsorbate-adsorbent (organic-surface) 

interaction; to this end, isotherms have been classified into four types, 

diagrammed in Figure 3.4: 
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(1) The S-type isotherm suggests ”cooperative adsorption”, which 

operates if adsorbate-adsorbate interaction is stronger than the 

adsorbate-adsorbent interaction. This condition favors the “clustering” 

of adsorbate molecules at the surface because they bond more 

strongly with one another than with the surface. 

(2) The L-type (Langmuir) isotherm reflects a relatively high affinity 

between the adsorbate and adsorbent, and is usually indicative of 

chemisorption.  

(3) The H-type isotherm, indicative of very strong adsorbate-adsorbent 

interaction (i.e., chemisorption), is really an extreme case of the L-type. 

This isotherm is not often encountered with organic molecules because 

few of them form strong ionic or covalent bonds with soil colloids but it 

is typical for the polyacrylic acid (PAA) adsorption on the oxide 

minerals.  

(4) The C-type (constant-partitioning) isotherm, which suggests a constant 

relative affinity of the adsorbate molecules for the adsorbent, is usually 

observed only at the low range of adsorption. Deviation from the linear 

isotherm is likely at high adsorption levels. Nevertheless, because 

many nonlinear organic compounds of interest in soils are adsorbed at 

quite low concentrations, the linear C-type isotherm is often a 

reasonable description of adsorption behavior. 

 

Ad
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S-type L-type
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Fig. 3.4. Classification of adsorption isotherms. [After Refs. (58, 59)]. 
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3.7 Binding mechanisms of the natural and synthetic 

amphiphilic macromolecules with the soil mineral 
particles 

 

The geochemistry, and ultimately the fate, of particles and particle-reactive 

compounds is strongly dependent on chemical reactions that occur at the 

solid-liquid interface of particles. These reactions can greatly affect the 

mobility, bioavailability, reactivity and toxicity of pollutants. Organic surface 

coatings modify particle-pollutant interactions which occur at the solid-liquid 

interface or on particle surfaces. 

 

Summers and Roberts (42) studied the effect of preferential adsorption of 

polydisperse humic acid samples on the measured adsorption isotherms and 

reported that previously developed concepts for well defined synthetic 

polymers (60-63) were also applicable to macromolecules of natural origin 

whose chemical composition was less well defined. 

 

Throughout this study the properties of simple polyelectrolytes will be 

compared with the properties of humic substances. It has to emphasized that 

the humics are not described as simple polyelectrolytes, only the properties of 

both components are shown to be similar. Naturally the degree of branching 

affects these similarities, but this was shown to be a second order effect.  

 

3.7.1  Adsorption of polyelectrolytes 
 

Adsorption of polyelectrolytes must imply changes in their shapes. The usual 

description of conformations at an adsorbing interface, first proposed by 

Jenkel and Rumbach (64) and depicted schematically in Fig. 3.5, is in terms 

of three types of subchains: trains, which have all their segments in contact 

with the substrate, loops, which have no contacts with the surface and 

connect two trains, and tails which are non-adsorbed chain ends. 
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Fig. 3.5.  Schematic representation of an adsorbed polyelectrolyte layer. 

Loops, tails and trains are indicated (after Ref. 65). 
 
 
 
In polyelectrolyte adsorption electrostatic interactions play a very important 

role. Since this interaction is of variable range and strength, depending on 

charge densities (for both the surface and the polyelectrolyte chain) and salt 

concentration, the adsorbed amount depends strongly on these two variables. 

At low salt concentrations, one usually finds that highly charged 

polyelectrolytes adsorb in small amounts, or hardly at all (66). When salt 

concentration is increased, the adsorption increases in the majority of cases. 

A schematic representation of the adsorbed layer for various situations is 

given in Fig. 3.6 (a – c).  The polyelectrolyte is assumed to be negatively 

charged, and the adsorbent surface charge density  is  constant.  The  two 

left-hand side cartoons [Fig. 3.6, (a) and (b)] refer to low ionic strength 

solutions where the adsorption is dominated by the electrostatics. At acidic pH 

region (low polymer dissociation degree), the increase in the PAA adsorption 

is  quite  common  which  is  attributed  to  the  coiled  conformation  at  this 

pH (coiled  because  it  is  slightly  ionized, and exhibits no  intrapolymer-chain   
electrostatic repulsion) [Fig. 3.6 (a)]. At basic pH range, the polyelectrolyte 

adsorbed amount becomes low due to the ionization of PAA which generates 

negative charges in the polymer chain and reduces the extent of coiling, with 

the result that less of the polymer is needed for complete surface coverage 

[Fig. 3.6 (b)]. Diagrams (c) correspond to the high ionic strength, the adsorbed 

amounts and the conformations of the polymers are the same because the 

charges associated with the polyelectrolytes are screened by the salt ions and 
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consequently the polyelectrolyte molecules show a tightly coiled and compact 

conformation in solution. 
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Fig. 3.6.  Schematic representation of polyelectrolytes at surface under 

various conditions for the polymer charge density and the ionic 
strength (after Ref. 65). 

 

 
3.7.2  Adsorption of humic acid 
 

Several authors studied the adsorption of humic substances onto mineral 

particles. Adsorption isotherms of humic acid on alumina (54, 67, 68), iron 

oxides (69-72) and manganese (73) were reported as well as the adsorption 

onto clays (10, 74-76). It is commonly observed that the adsorption increases 

with decreasing pH and in most studies the adsorption was found to increase 

with increasing salt concentration. The effect of these interactions on the 

speciation of the different components and complexes depends strongly on 
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the conditions and more specifically on the conformation of the adsorbed 

humic acid (77). 

 

According to Sposito different interaction mechanisms for the adsorption of 

humic substances to mineral particles have to be considered (78), the major 

ones are: ion exchange or physical adsorption (purely coulombic interactions), 

ligand exchange or surface complexation (specific segment surface 

interactions), divalent cation bridging and hydrophobic interactions. It is 

generally accepted that all of these interactions may be important rather than 

only one of them. The importance of the different mechanisms for a given 

system depends on the mineral particles under investigation and the solution 

conditions during the experiments (67, 42, 79). 

 

For the adsorption of humic acids on positively charged minerals, in general, 

an increase in adsorption is observed with decreasing pH and increasing salt 

concentration (67, 72, 79, 80). This behaviour is explained in various ways. 

According to Summers and Roberts (42), physical adsorption occurs next to 

specific binding and the differences in the adsorbed amount are mainly due to 

the charge difference between the mineral particles and the organic matter, 

and shielding of the lateral interactions by the indifferent electrolyte. 

 

Of the principal adsorption mechanisms, the most important is considered to 

be ligand exchange. Ligand exchange refers specifically to direct bond 

formation between a carboxylate group and either Al(III) or Fe (III) in minerals 

possessing inorganic hydroxyl groups (42, 67, 71, 78-81). With increasing pH 

the adsorbed humic molecules may become more negatively charged which 

leads to a repulsion of the negative groups of the adsorbed humic that are not 

involved in ligand exchange, decreasing the overall affinity for the surface. 

The net energy for bond formation via ligand exchange will also decrease due 

to the change of the surface potential with increasing pH.  

 

The chemical bonds formed in the inner-sphere complexes are stronger than 

the electrostatic bonds involved in anion exchange or in the two bridging 

mechanisms. Evidence for ligand exchange in carboxylate adsorption 
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reactions of humic substances with mineral surfaces is abundant though 

indirect (53, 72); adsorption is thought to be analogous to inorganic oxyanion 

ligand-exchange reactions. 

 

Adsorption of humic substances by a ligand-exchange mechanism is thought 

to proceed by the following sequence (78, 81, 82): 

>SOH + H+                                          >SOH2
+                                         (3.1)

>SOH2
+ + Hu-C(O)O-                        >SOH2

+ -O(O)C-Hu                      (3.2)

>SOH2
+ -O(O)C-Hu                           >SO(O)C-Hu + H2O                      (3.3)

 

Where >SOH represents a surface hydroxyl group on the mineral (S is the 

metal cation Al(III) or Fe(III)) and Hu-COO- represents the humic carboxyl 

group. The protonation step in equation (3.1) makes the surface hydroxyl 

group more exchangeable, but may not be necessary if the concentration of 

humic carboxyl groups is sufficiently high (78). Humic carboxyl groups may 

then form outer-sphere complexes with the protonated surface hydroxyl 

groups (equation (3.2)), and ligand exchange occurs in equation (3.3) in which 

Hu-COO- replaces OH2 and forms an inner-sphere complex with the metal 

cation. 

 

Divalent cation binding also affects the adsorption of humic acid onto mineral 

particles (69, 72, 83). In the presence of divalent ions, like Ca2+ and Mg2+, 

Tipping (72) reported slightly higher values for the adsorption. It was shown 

that the extra capacity was associated with coadsorption of Ca2+ and/or Mg2+ 

ions. Tipping postulated that the cations compete with the oxide for the 

anionic groups on the humic acid molecules, causing fewer contacts per 

humic acid molecule and consequently an increased adsorption. Due to the 

formation of metal ion-humic acid complexes also the lateral electrostatic 

repulsion is decreased and this also may contribute to the increased 

adsorption. Tipping mentioned that a non Langmuir behaviour was observed 

in the case where Ca2+ and Mg2+ were present, which was ascribed to the 
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screening by the divalent ions. Engebertson and Wandruszka (83) showed 

that humic acid undergoes a number of organizational rearrangements when 

subjected to metal ions in solution. According to these authors the formation 

of intermolecular humic acid/metal ion pseudomicelles precedes 

intermolecular interactions. Aggregates of humic acid molecules in the 

presence of metal ions should be regarded as more compact and more 

micelle-like in nature than analogous hydrophobic moieties that exist in 

dissolved humic acid when no metal ions are present. Due to such a compact 

structure the increased adsorption was explained. 

 

A final aspect concerning the characteristics of the adsorption isotherms are 

hydrophobic interactions. Humic substances are of amphiphilic nature, they 

contain both hydrophobic and hydrophilic moieties. Due to these interactions 

the shape and the absolute adsorbed amount of the adsorption isotherms 

may be influenced. For instance Amal et al. (84), suggested for the adsorption 

of fulvic acid to hematite particles first coverage in a monolayer due to 

electrostatic interaction, followed by further adsorption or “hemimicelle” 

formation through hydrophobic effects between the first and successive 

layers. This type of adsorption was reflected by the fact that the adsorption 

isotherms described by Amal, first show a pseudo plateau, followed by a 

second step. 

 

3.8 Sorption mechanisms of hydrophobic organic 
compounds   

 

Humic materials appear to be the most important soil component for the 

binding of pollutants in soil (85). The interactions of HAs are particularly 

important because of their many interactions with both organic and inorganic 

contaminants. Associations between HA and the hydrophobic organic 

compounds (HOCs) are especially important since they impart, and often 

control HOC solubilization, transport, and retention in the environment (11, 

86). A detailed understanding of the nature of HOC interactions with HA 

should significantly aid the prediction of their movement in the environment. 

This understanding is important for accurately modeling contaminant fate and 
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establishing realistic environmental management and remediation strategies. 

Numerous studies have been performed with humic materials and 

contaminants in an effort to develop such understanding (87-90). Almost all of 

these studies have utilized macroscopic experiments. One subset of these 

experiments has focused on the development of sorption models to form a 

conceptual picture of SOM-HOC interactions.  

 

Currently discussed sorption models can be differentiated by the proposed 

sorption mechanism. Two mechanisms, “partition” and “sorption”, have been 

frequently suggested to describe HA-HOC association (85-87). The “partition” 

model employs the gel polymer concept of HA in which the material is viewed 

as a loose three-dimensional tangle of macromolecules that offers an organo-

lipophilic phase, analogous to organic liquids, for the movement of HOCs from 

the lipophobic environment of water (86, 87, 91, 92). In the “sorption” model, 

HA may be viewed as a mixture of macromolecules possessing specific three 

dimensional hydrophobic domains where HOCs, thermodynamically excluded 

from the aqueous phase due to their hydrophobicity, may preferentially “bind” 

(71, 93).  

 

Schlautman and Morgan (94) noted that the binding of HOCs by dissolved 

humic materials depended on the hydrophobicity as well as the size of the 

solute molecules which are both important properties in determining their 

ability to fit into proposed hydrophobic cavities in humic materials. This 

reasoning alludes to a host/guest phenomena as being a likely mechanism for 

the association of polycyclic aromatic compounds with humic substances. 

Conceptually, sorption occurring by the “partition” mechanism can be 

compared to the sorption of HOCs to rubbery polymers (93) and sorption 

occurring by the “sorption” mechanism can be compared to sorption of HOCs 

to glassy polymers (95). Despite the large number of studies supporting 

“partition” model sorption through linear sorption of HOCs to HA (90, 96, 97), 

many recent studies give evidence for partition character by reporting 

nonlinear sorption isotherms (89, 98-104), solute-solute competition (88, 95, 

98), and desorption hysteresis (105-109). These observations cannot be 
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adequately explained by a purely partitioning model and have been explained 

by attributing “dual-mode” sorption properties to SOM (110-115).  

 

Polymers have been shown to possess both rubbery and glassy states and 

have been described as dual-mode sorbents (116, 117). The glassy state is 

characterized by a more condensed three-dimensional structure where the 

polymer segments have measurably higher cohesive forces than in the 

rubbery state (118-121). Sorption of gases and organic molecules to the 

rubbery state occurs by dissolution, while sorption to the glassy state occurs 

by concurrent dissolution and hole-filling mechanisms. The holes are 

postulated to be local regions of physical voids having molecular-sized 

dimensions where a limited number of sorbate molecules may undergo an 

adsorption-like interaction with an internal surface.  

 

A number of investigators have drawn analogies between HA and synthetic 

organic polymers. Humic substances have been described as having 

expanded and condensed regions (111, 113, 114), which may be analogous 

to rubbery and glassy states found in polymers. This theoretical treatment of 

polymers states that sorption into rubbery (“soft”) domains is fast and displays 

linear isotherms while that into glassy (“hard”) domains is slow and displays 

nonlinear isotherms (102, 110, 112, 115). There has been significant 

discussion regarding, among other experimental data, linear and nonlinear 

sorption isotherms of contaminants to soil systems. These discussions have 

produced a number of studies that have resulted in the proposition of several 

different conceptual models for soil humic matter that can broadly be 

encompassed under the term “dual-mode” sorption. 

 

“Dual-mode” sorption models make specific claims about the presence of 

microscopic HA domains (88, 89, 95, 98, 99, 101-105, 108, 109, 111-115,  

122). The existence of these domains cannot be proven through macroscopic 

sorption experiments. Among these claims there is question over the actual 

existence of different organic matter phases (104, 123) or distinctly different 

local chemical moieties that are cited as being responsible for nonlinearity in 

sorption isotherms, competitive sorption, desorption hysteresis, and other 
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results that seems to contradict “partition” uptake. A recent review of the 

chemical interactions of hydrophobic organic contaminants with soil organic 

matter recognized the need for “direct observational data” of the location of 

sorption interaction (122). Such data is difficult to obtain due to the 

heterogeneity of SOM. In light of this heterogeneity, solid-state NMR may be 

the best technique for these observations because of its ability to describe the 

local chemical environment of NMR-active nuclei. Incorporating such a nuclei 

in a suitable molecular probe allows the observation of different chemical 

domains that may be present in a sorbent such as HA. Using this technique, 

dual-mode sorption domains in SOM have been observed by examination of 

the sorption of HFB to SOM (124).  
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4. Materials and methods 
 
This chapter provides information about the materials and methods used in 

the subsequent research discussion. All chemicals, unless otherwise stated, 

were reagent grade or better without further treatment. Water purified through 

Millipore filters was used in all experiments. All experiments were performed 

at room temperature (25°C).   

 

4.1  Materials 
 

4.1.1  Humic acid 
 
One batch of soil extracted humic acid was used in all experiments, the 

amount of HA obtained was large enough to perform the characterization, 

fractionation and the adsorption studies. 

 

4.1.1.1 Extraction of humic acid 
 

Soil material was taken from the Ap horizon of the Orthic Luvisol, 

Merzenhausen, Germany (125). The field-moist soil was  passed  through  a 

5-mm sieve and stored at -17°C. As described in Fig. 4.1, the humic acid was 

isolated using standard extraction and purification procedures as 

recommended by the International Humic Substances Society (126).  Briefly, 

500 g of moist soil material was suspended in 5 L of Argon purged 0.1 M 

NaOH, shaken for 24 h at 25°C, and centrifuged for 15 minutes at 13 000 

rpm. The supernatant solution containing fulvic and humic acids was filtered 

through glass wool and acidified to pH 1.0 with HCl to flocculate the humic 

acids. To achieve complete separation of fulvic acid, the precipitated humic 

acid was resuspended in 0.1 M NaOH and flocculated twice with HCl as 

described above. The humic acid fractions were collected and treated three 

times with a 0.1 M HCl-0.3 M HF solution to remove mineral impurities. The 

precipitated humic acid was dissolved again with the NaOH solution. The ash-

free humic acid was  then  dialysed  against  slowly,  flowing  deionized  water  
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using Spectra/Por 6 tubing (MWCO 1000) for one month. The humic acid 

obtained in this way is in its proton form, it is freeze-dried and stored in the 

dark at 3°C.  

 

 
 

500 g Soil material

5 L 0.1 M NaOH, Argon, in dark, 24 h shaking 

Extract
HA and FA

Supernatant
FA

Flocculent
HA

Resuspension
in 0.1 M NaOH

Treating three
times with 

0.1 M  HCl-0.3 M HF

Dissolving in NaOH,
dialysis for one month,

freeze-drying

pH = 1.0

two
times

Humic acid

pH = 1.0

 
 
 
Fig. 4.1. Scheme of humic acid extraction from the soil material. 
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4.1.1.2 Fractionation of humic acid 
 

The isolated and purified humic acid was separated (as described in Fig. 4.2) 

into eight molecular size fractions by using the ultrafiltration technique (UF) 

(127, 128). An alkaline solution of humic acid (1 g/50 ml) was microfiltrated by 

using a 0.2 µm Nylon filter and an Amicon ultrafiltration stirred cell (model 

8050) under a pressure of  2.5  bar  from  an Argon  tank.  The  stirring  speed   

 
Alkaline HA solution

Filtrate
Retentate

Fr0

Filtrate
Retentate

Fr1

Filtrate
Retentate

Fr2

Filtrate
Retentate

Fr3

Filtrate
Retentate

Fr4

Filtrate
Retentate

Fr5

Filtrate
Retentate

Fr6

Filtrate
Retentate

Fr7

Filtration through
0.2    m Nylon filter

Filtration through
XM300 membrane

Filtration through
YM100 membrane

Filtration through
XM50 membrane

Filtration through
YM30 membrane

Filtration through
YM10 membrane

Filtration through
YM3 membrane

Filtration through
YC05 membrane

µ

 
 
Fig. 4.2. Graphical depiction of the HA fractionation by using the UF 

technique. 
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was maintained at 450 rpm. The retentate was washed with small portions of 

Millipore water until colorless liquid passed through the microfilter. The 

washed retentate (Fr0) was sucked carefully out of the above membrane 

space of the ultrafiltration cell. The filtrate obtained was then fractionated by 

using an Amicon ultrafiltration cell (model 8400) and a series of Amicon 

membranes of successively smaller pore size to obtain HA fractions with 

different nominal molecular size which were classified as Fr1,  larger  than 

300 000  Da;  Fr2,  300 000-100 000  Da;  Fr3,   100 000-50 000   Da;   Fr4, 

50 000-30 000  Da;  Fr5,  30 000-10 000  Da;  Fr6,  10 000-3 000   and   Fr7, 

3 000-1000 Da. All separations were performed under identical conditions. 

After each run, the membrane was removed, rinsed with distilled water, and 

stored overnight at 0-4°C. The complete separation process was repeated at 

least three times to assess the reproducibility of the fractionation results using 

the Amicon ultrafiltration technique. The separated fractions of the humic acid 

were freeze-dried, weighed and stored in the dark at 3°C.  

 

 

4.1.2  Polyacrylic acid  
 

Polyacrylic acid (PAA) was supplied as aqueous solution, and used as 

received. Table 4.1 summarizes some physicochemical properties of the PAA. 

 

 

Table 4.1. The physicochemical properties of PAA. 
 

 

Molecular weight (g/mol) 
 

50 000 

Structure 
CHCH2

C
OHO

n

 
Monomer molecular weight (g/mol) 72 

Supplier Polyscience 
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4.1.3  Organic chemicals 
 

The organic markers used in this study were pyrene and Hexafluorobenzene 

(HFB) and the pollutant was 2,4-dichlorophenol (2,4-DCP). Relevant 

physicochemical properties of these compounds are listed in Table 4.2.  

 

Table 4.2. Physicochemical properties of the organic chemicals used. 
 

 
 

Pyrene 
 

HFB 
 

2,4-DCP 
 

Molecular weight (g/mol) 
 

202.26 
 

186.06 
 

163.00 

Structure 

   

Solubility in water (mg/l) 0.135a 342b 4400c 

Log Ko/w 5.18a 2.55b 3.23c 

pK value   7.85c 

Supplier Aldrich Aldrich Merck 

F

F

F

F

F

F
OH

Cl

Cl

 

a Ref (129) 
b Ref (130) 
c Ref (131) 
 

 

4.1.4  Aluminum oxide  
 
The hydrous oxide particles used in this study were γ-Al2O3 (Degussa, 

Aluminum oxide C). Aluminum oxide C is produced by flame hydrolysis of 

anhydrous aluminum chloride and Debye-Scherrer x-ray diffraction patterns 

reveal that it has primarily a gamma structure. The chemical purity is >99.6% 

and the density is 2.9 g/cm3. The average primary particle size is 13 nm (132). 

To exclude chloride contamination, the aluminum oxide was pretreated by 

heating for 6 hours at 1000°C. Other additional data are listed in Table 4.3.  
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Table 4.3. The physicochemical properties of Al2O3. 
 

 

Specific surface area (BET) (m2/g) 
 

85±5a 

Average particle size in suspension (nm)  215b 

pH value at the isoelectric point 8.8a 
 

a determined by this work, 
b determined by dynamic light scattering at pH 5.5 and 0.01 M KNO3 

 
4.2  Methods 
 

4.2.1  Analytical methods 
 
4.2.1.1 Polyelectrolyte titration technique  
  

According to the polyelectrolyte titration technique, the basis of the 

determination of HA and PAA is the formation of a polysalt with the polycation. 

The polysalt reaction occurs quantitatively according to 1:1 charge saturation 

as shown schematically in Fig. 4.3. At the end point, the chromotropic cationic 

titrant reacts with an anionic dye. The corresponding color change is ascribed 

to a polymer-induced interaction of dye molecules with one another, which 

occurs when the distances between the molecules are small. A high structural 

charge density and thus a small distance (<1 nm) between the charge centers 

is a prerequisite for the chromotropic properties of a polyelectrolyte. The dye 

molecules may then interact to produce a metachromatic shift in the 

absorption bands and hence a detectable color change. 

 

Both the polysalt formation and the indicator reaction are based on 

electrostatic and cooperative interaction. The equilibrium constants K1 and K2 

differ owing to differences in the degree of cooperativity of the 

polymer/polymer versus the polymer/dye interaction. With a sufficiently large 

ratio of the two constants (K1/K2 > 100), the dye binds with excess polycations 

only after complete polyanion-polycation reaction. This is expressed by a 

sharp color change and an exact end point. 
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Fig. 4.3.  Reaction scheme for the direct determination of anionic 

polyelectrolytes using chromotropic polycations and an anionic 
metachromatic dye for end-point detection. [after Ref. (133)] 

 

 

The HA and PAA were estimated quantitatively by direct polyelectrolyte 

titration using a phototitrator, Type 90, from BASF (two light-emitting diodes 

having emission maxima at 635 nm and 565 nm). The Dosimat, type 665 from 

Metrohm was used as a motorized burette.  

 

The titrations were carried out in a Plexiglas cuvette (100 ml volume). The 

cuvette was filled with 50 ml argon saturated millipore water (pH = 10). Owing 

to the pH sensitivity of the daily fresh prepared Eriochrome black  T  (ECBT), 

1 ml of NH3/NH  buffer solution (0.01 mol/l, pH = 10-11) was added to the 

titration solution. 1 ml 0.1 mol/l EDTA was also added to complex polyvalent 

metal ions which may have been present, and which can interfere with the 

4
+
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colour reaction, even in traces. x ml of the HA or PAA and 1 ml of fresh daily 

prepared ECBT were added. Finally the titration solution was filled up to about 

100 ml by using the argon saturated millipore water (pH = 10). After 5 min of 

stirring, the solution was titrated by using 30 mg/l 3,6-ionene bromide solution 

(Polybren, Aldrich Chemie) as a titrant. The accuracy of this method is ±5%. 

 

4.2.1.2 Potentiometric acid-base titration 
 

The pH-dependent surface charge was determined by potentiometric 

acid-base titration under a CO2-free atmosphere. KNO3 was used as an 

indifferent background electrolyte to maintain a constant ionic strength 

ranging between 0.01 and 1.0 mol/l. The titrations are performed in a glass 

jacketed, 100 ml Duran vessel that is kept at a constant temperature (25°C) 

using a circulating water bath. The titration vessel is sealed with a 

polypropylene screw cap. A silicon rubber ring provides a gas-tight seal 

between the screw cap and the glass cell. The polypropylene screw cap is 

equipped with five sockets that provide access to electrodes, burettes and 

argon gas lines. The glass cell  is  cleaned  very  thoroughly,  rinsed  with 

high-purity water and dried before use. The burette cylinders and the tubing 

connecting the burettes with the cell are rinsed several times with the titrant in 

order to eliminate contaminants and/or trapped air bubbles. The 

suspension/solution was mixed by a magnetic stirrer  with  a  clean  dry 

Teflon-coated stirring bar. Clean  freshly  rinsed  electrodes,  dried  with  a 

lint-free tissue, are placed in the cap that is subsequently connected to the 

glass cell.  

 

Before the experiment can be started the suspension/solution is outgassed 

extensively. Argon was used to continually purge for at least half an hour and 

keep the system free of CO2. During this procedure the suspension/solution is 

stirred continuously. Measurement of a stable pH can be used as an indicator 

for the state of the cell. Once the cell is prepared for a titration it should 

remain closed, additions (titrant, reagent) have to be made through a septum 

in order to prevent carbon dioxide entrance.  

31 



Chapter 4                                                                                     MATERIALS AND METHODS 
 

 
 

Titrants were prepared from commercial volumetric standards (Tritrisol, Merk); 

0.1 mol/l HNO3 was used as acid titrant and 0.1 mol/l KOH as base. All of 

them prepared with millipore water, which had been boiled and allowed to 

cool in CO2-free argon atmosphere. The exact base concentration was 

determined by titration with a standard benzoic acid solution. 

 

A given amount of equilibrated suspension/solution containing 0.5 g of 

aluminum oxide, 0.02 g PAA or portions of electrolyte-free humic acid solution 

containing 0.02 g of humic acids was diluted with KNO3 solution to give a 

volume of 50 ml. A titration cycle always started with a forward titration of an 

acidified solution of low ionic strength with base, followed by a backward 

titration with acid, and ended with the addition of solid KNO3 to adjust the ionic 

strength to the next higher level. During each forward or backward titration 

and after the addition of titrant, the rate of drift was measured over a 2 

minutes interval after an initial delay of 20 seconds to allow adequate mixing. 

The electrode readings were accepted when the drift was less than 0.2 

mV/min. A maximum reading time of 20 minutes was set for two successive 

additions of titrant. The doses of HNO3 and KOH were calculated by the 

interface to obtain a constant mV change of 5 mV for each addition, in order 

to obtain a good distribution of data points over the pH range studied. Such 

cycles were performed for different ionic strengths by using a developed 

titration system (GIMET-1, Szeged University) with 665 Dosimat (Metrohm) 

burettes, argon bubbling, magnetic stirrer and high performance 

potentiometer, yielding a whole series of forward and backward titration 

curves in a single experiment. The whole system (mV-measure, stirring, 

bubbling, amount and frequency of titrant) was fully controlled by a PC using 

AUTOTITR software (Szeged University). A Metrohm combination pH 

electrode was calibrated for three buffer solutions to check the Nernstian 

response. The hydrogen ion activity vs. concentration relationship was 

determined from reference solution titration so that the electrode output could 

be converted directly into hydrogen ion concentration instead of activity. 
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The net proton surface excess amount (∆q, mmol/g) is defined as the 

difference of H
+
 (ΓH+) and OH

-
 (ΓOH-) surface excess amounts related to unit 

mass of solid, ∆q = ΓH+ - ΓOH-. The surface excess amount defined for the 

adsorption (134) is determined from the initial and equilibrium concentration of 

the solute. The values ΓH+ and ΓOH- were calculated at each point of titration 

from the electrode output using the actual activity coefficients from the slope 

of the straight lines of H
+
/OH

-
 activity vs. concentration functions from the 

corresponding background electrolyte titration. The surface excess 

concentration of H
+
 or OH

-
 was calculated as a function of pH. The amount of 

charged sites defined as the net proton surface excess (∆q = ΓH+ - ΓOH-) was 

related to the unit mass of alumina, PAA or humic acid and plotted as a 

function of pH.  

 

4.2.1.3 UV-VIS spectroscopy 
 
4.2.1.3.1 Determination of E465/E665 
 

The UV-VIS absorption spectra of the HA and its fractions were recorded over 

the wavelength region from 200 nm to 700 nm by means of Uvikon 920 

spectrophotometer (Kontron Instruments) using 1 cm quartz cuvettes. The 

cuvettes are rinsed three times with the measured samples solutions before 

the measurement process. All samples were diluted to obtain 0.5 g/l humic 

acid and the humic acid fractions. The measurements were carried out in a 

0.05 mol/l NaHCO3 solution, which was also used as the blank. The E465/E665 

ratios were calculated as the ratio of absorbance at 465 nm and 665 nm 

(135). 

 

4.2.1.3.2 Determination of 2,4-DCP 

 

The UV-VIS absorption spectra of the 2,4-dichlorophenol (2,4-DCP) were 

recorded over the wavelength region from 180 nm to 450 nm by means of  a 

Uvikon 920 spectrophotometer (Kontron Instruments) using 0.1 cm quartz 
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cuvettes. The cuvettes are rinsed three times with the measured sample 

solutions as described in 4.2.1.3.1.  In order to eliminate light scattering 

effects of the remaining very small solid particles, the 2,4-DCP concentration 

was evaluated through the second derivative of the measured absorption 

spectra (derivative spectroscopy). 

 

4.2.1.4 FT-IR spectroscopy 
 

Humic substance (2 mg) was ground with 100 mg oven-dried potassium 

bromide (IR grade; Aldrich) and turned into a pellet. Infrared spectra were 

recorded on the pellet under nitrogen with a BRUKER EQUINOX-55 

spectrometer equipped with a DLATGS detector. All spectra were recorded 

between 500 and 4000 cm-1 over 22 scans at 4 cm-1 resolution. 

 

The “ab initio” calculations were performed with the DGauss suite of programs 

on a Cray supercomputer (SV1). The geometry was fully optimized without 

imposing external symmetry constraints using the BLYP/6-31G∗ basis set. 

Thereafter a force constant calculation was performed to obtain the vibrational 

frequencies and the corresponding FT-IR intensities. For comparison with the 

experimental results of FT-IR spectroscopy, the calculated wavenumbers 

were multiplied by a constant factor of 0.98. 

 

4.2.1.5 NMR spectroscopy 
 
4.2.1.5.1 13C-NMR spectroscopy 
 
Comparative solid-state 13C-NMR spectra of the dried humic materials were 

obtained on a Bruker DSX 200 operating at a frequency of 50.3 MHz using 7 

mm OD zirconium rotors with KEL-F caps. A ramped cross polarization magic 

angle spinning technique (6.8 kHz spinning rate) 1H-pulse was used to 

circumvent spin modulation of Hartmann-Hahn conditions (136). A contact 

time of 1 ms and a 90° 1H-pulse width of 5.3 µs were used for all spectra (52). 

The 13C-chemical shifts were referenced to tetramethylsilane (= 0 ppm), using 
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glycine as an external standard (COOH: 176.04 ppm). Between 2 x 104 and 

10 x 104 scans were accumulated using a pulse delay of 400 ms (137). Prior 

to Fourier transformation, a line broadening of 0 to 75 Hz was applied, 

depending on the sensitivity of the sample. The relative intensity of the peak 

areas was obtained by integration of the specific chemical shift ranges using 

an integration routine supplied with the instrument software. For data analysis, 

as shown in Fig. 4.4, the spectra were divided into chemical shift regions 

assigned to the chemical group classes alkyl C (0-45 ppm.), O-alkyl C (45-110 

ppm.), aromatic C (110-160 ppm.), phenolic C (140-160 ppm.), carboxyl C 

(160-185 ppm.), and carbonyl C (185-220 ppm.), respectively.  

300 200 100 0

phenolic C

ppm

carbonyl C

carboxyl C

aromatic C
O-alkyl C
alkyl C

 

 
Fig. 4.4.  Solid state 13C-NMR spectrum of humic acid and its different 

group classes. 
 
 

4.2.1.5.2 19F-NMR spectroscopy 
 

The 19F-NMR measurements were performed at the Chemistry and 

Biochemistry Department, South Dakota State University. 
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Initial 19F NMR experiments were performed in the single-pulse mode to 

optimize the acquisition rate and 90 degree pulse angle while avoiding 

saturation of the nuclei due to inappropriately short recycle or delay times. 

Subsequent static and MAS 19F NMR experiments were performed in the 

single-pulse mode (4.3 ms pulse, 49 kHz window, 0.334 s acquisition, 1.00 s 

delay between pulses) on a Bruker Avance 300 spectrometer equipped with a 

4 mm solid state probe at a frequency of 282.414 MHz and externally 

referenced with respect to CFCl3 (neat HFB taken as –163.0 ppm) (138). 

Rotor spin rates were held constant for each spectrum acquired but were 

varied between 4 and 15 kHz for identification of spinning sidebands. A line 

broadening of 50 Hz was applied to all spectra except the fine detail inserts, 

which have no line broadening applied.  

 

4.2.1.6 Electrophoretic measurements  
 

Measurements of the electrophoretic mobility of the bare alumina and of the 

PAA/alumina and HA/alumina complexes were carried out with the Laser Zee 

Meter, model 501 (PENKEM, USA) at pH = 5.5, 7.5 and 9.5 and 0.01 M 

KNO3.  Using the Smoluchowski approximation the zeta potential can be 

calculated (software Z-Trac, COLLOTEC, Germany). The electrophoretic 

mobility (EM) is recalculated from the mean value.  

 

Alumina and PAA or HA were mixed and equilibrated for a given time. Dilute 

suspensions (100 mg/l) were prepared by diluting a small fraction of the 

sediment in the 0.01 M KNO3 background electrolyte. The sample was 

ultrasonicated for 60 s in a sonicator bath before performing the 

measurements. In order to obtain reliable values of electrophoretic mobility, 

the electrophoretic cell was filled three times with the dilute suspension and 

six measurements were repeated. The electrokinetic results are thus mean 

values of 18 measurements. 
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4.2.1.7 Dynamic light scattering 
 

Dynamic light scattering (DLS) was shown to be a valuable tool for studying 

the colloidal stability of alumina as a function of different PAA or HA adsorbed 

amounts. The measurements were performed using a ZetaSizer 4 

(MALVERN) apparatus operating at λ = 633 nm produced by an He-Ne laser 

at a  scattering  angle  of  90°.  Particles  from  the  alumina  suspension, 

PAA-Al2O3 or HA-Al2O3  complexes were dispersed in 0.01 M KNO3 solution 

at a certain pH values, the suspension was placed  in the cell and measured 

directly.  

 

The correlation functions were evaluated by cumulant analysis (139). The 

first-order autocorrelation function, g1(t), can be given as 

 

  g1 (t) = exp(-Γt + (µ2/2!) t2 + (µ3/3!) t3 + ...)  
 
where Γ is an average decay rate, Γ characterizes the mean, µ2 the width and 

µ3 the skewness of the distribution. If qR<<1, the translational diffusion is the 

dominant dynamics, the diffusion coefficient can be calculated  
 
 Γ = Dt q2  
 
where the scattering vector, q, is  
 

q = (4πn/λ) sin(θ/2)  
 
and according to the Stokes-Einstein equation  
 
 Dt = kT/6πη RH  
 
the average diffusion coefficient, Dt, is related to the hydrodynamic radius, RH, 

where k is the Boltzmann constant, T is the temperature, η is the viscosity of 

the medium, n is the refraction index of the solution, λ is the laser wavelength 

and θ is the scattering angle. 
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4.2.1.8 Elemental analysis 
 

The elemental content (C, H, N, S) of the HA and its fractions were 

determined using a Leco CHNS-930 elemental analyzer in the Central 

Department of Chemical Analysis, Research Center Jülich. Elemental 

measurements were performed immediately after freeze-drying so that 

moisture interference would be minimal. The ash content was determined 

from mass lost after heating the humic acid at 750°C, until a constant mass 

was obtained. 

 

4.2.2 Adsorption measurements 
 
Stock humic acid solutions were prepared by dissolving humic acid in 0.005 M 

KOH aqueous solution, sonicating for 3 min, and finally shaking for 1 hour. 

HNO3 (or KOH) was then added to adjust its pH. Weighted amounts of KNO3 

were added to HA solutions to adjust to the desired ionic strength (0.01, 0.1 

and 1.0 M). 

 

The alumina suspensions (15 g/l) were prepared for use as working stocks in 

order to obtain consistent solid concentrations in the equilibrium adsorption 

experiments. These suspensions were made in 0.01, 0.1 and 1.0 M KNO3 for 

the PAA or HA adsorption isotherms (or KCl for the 2,4-DCP adsorption 

experiments) at the desired pH value over a period of 14 days.  

 

4.2.2.1 Adsorption of organic macromolecules on aluminum oxide 
 

4.2.2.1.1 Adsorption of humic acid 
 

A fraction of the well-mixed alumina suspension (at the desired pH and ionic 

strength value) was then pipetted into series of humic acid solution at varying 

concentration (2-420 mg/l) to give the final volume of 30 ml in 50-ml 

polyethylene centrifugation tubes. The suspensions were shaken for 24 h on a 

horizontal shaker (Janke & Kunkel)  to  reach  equilibrium.  The  final  alumina  
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concentration for all adsorption experiments was 7.5 g/l. Preliminary 

experiments verified that after 18 h no measurable change occurred in the 

adsorbed amount. 5 ml aliquot was removed for the subsequent 

electrophoretic and DLS measurements. The remaining portion of each 

sample was centrifuged for 30 minutes at 20 000 rpm (Sorvall company). The 

supernatant was transferred to separate bottles. The amount of HA adsorbed 

was calculated from the difference between the total added HA concentration 

and the HA concentration in the supernatant by direct polyelectrolyte titration 

(4.2.1.1). Calibration curves were made for each required pH and salt level. 

 
4.2.2.1.2 Adsorption of polyacrylic acid   
 

The adsorption experiments were performed exactly as in the case of HA 

adsorption experiments (as described in 4.2.2.1.1). The total added 

concentration of PAA generally varied from 2 to 250 mg/l. Preliminary 

experiments verified that during the course of an adsorption  experiment  at 

pH = 5.5 and 7.5, little variation in pH was observed. This problem was solved 

by performing the experiments in the presence of 4 µM acetic acid/sodium 

acetate buffer (to adjust the system pH at 5.5) or 2 µM Tris buffer (to adjust 

the system pH at 7.5). 

 

4.2.2.2 Adsorption of 2,4-DCP on HA/Al2O3 complex 
 

The alumina particles were coated with humic acid by adding 75  ml  of  a 

well-mixed alumina suspension (30 g/l) (at the desired pH and ionic strength 

value) to a 75 ml of varying amounts of dissolved HA solution (120, 240, 400 

or 560 mg/l) at the same pH and ionic strength value in 250-ml polyethylene 

centrifuge bottles. After shaking for 24 h, the HA/Al2O3 complexes were 

centrifuged for 45 minutes at 13 000 rpm (Sorvall company). 100 ml of the 

supernatant solution in each bottle was aspirated into a plastic container.  100 

ml of KCl solution (at the same pH and ionic strength value) was added to the 

complex.  
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The HA/Al2O3 complexes were resuspended for 24 h in the (Janke & Kunkel) 

horizontal shaker. This washing step was repeated seven more times to 

exclude the free HA from the solution. The aspirated supernatant of each 

washing step was stored for HA measurement (see Fig. 4.5). The stock 

HA/Al2O3 suspensions were stored in the dark at 3°C. 

 

4  c HA solution
pH = 5.5, 6.5 or 7.5

I = 0.01, 0.1 or 1.0 M KCl

30 g/l Al2O3 suspension
pH = 5.5, 6.5 or 7.5

I = 0.01, 0.1 or 1.0 M KCl

2  c HA-15 g/l Al2O3 complex
pH = 5.5, 6.5 or 7.5

I = 0.01, 0.1 or 1.0 M KCl

mixing ratio 1:1

24 h equili-
brium period

Centrifugation
13 000 rpm
for 45 min.

Decanting
2/3 supernatant

Adding 2/3 
KCl solution

(at same pH and I),
resuspension 

for 24 h

HA analysis

8 times
washing

.

.

 
 
Fig. 4.5.  The preparation scheme of HA/Al2O3 complexes. 
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5 ml of the well-mixed HA-alumina complex suspension (15 g/l) (at the desired 

pH and ionic strength value) was then pipetted into series of 2,4-DCP portions 

at differently varying concentrations to give the final volume of 10 ml in 16-ml 

polyethylene centrifugation tubes. The 2,4-DCP stock  solution  used  was 

pre-adjusted at the same pH and ionic strength concentration. The 

suspensions were shaken for 24 h in an overhead shaker (Heidolph 

company). The samples were centrifuged for 45 minutes at 20 000 rpm 

(Sorvall company). The 2,4-DCP adsorbed amount was calculated from the 

difference between the initial concentration of the 2,4-DCP and the 2,4-DCP 

equilibrium concentration in the supernatant by using the UV-VIS 

spectroscopy technique (as described in 4.2.1.3.2). 

41 



Chapter 5                                                                                     RESULTS AND DISCUSSION 
 

 
5  Results and discussion 
 

5.1  Materials characterization  
 

The interaction between HA and charged solid particles such as amphoteric 

aluminum oxide in aqueous media is essentially influenced by the pH and 

ionic strength and depends on the charge of both the solute molecules and 

the solid particles. To understand the influences of these solution parameters 

on the surface charges a quantitative characterization using potentiometric 

acid-base titration was necessary. Moreover, HA and its fractions were 

characterized using different spectroscopic  methods  (NMR,  UV-VIS  and 

FT-IR spectroscopy) to obtain more information on the chemical structures 

and the functional groups of these macromolecules. For comparison, 

investigations with polyacrylic acid (PAA) were also carried out. 

 

5.1.1 Characterization of the organic macromolecules 
 
5.1.1.1 Acid-base properties of polyacrylic acid  
 

A unified structure of humic acid does not exist. Therefore, the structure and 

the geometry of these (macro)molecules always have to be approximated.  To  

study the adsorption of these natural polyelectrolytes and the conformation of 

the adsorbed molecules a model system would be helpful. 

 

Based on the structural features, humic acid molecules are often described as 

fairly flexible polyelectrolytes (37, 38, 40-42). Compared to humic substances, 

which contain various functional groups, polyacrylic acid (PAA) are much 

simpler molecules, containing only carboxylic groups and linear –CH2–CH2– 

chain, but they facilitate the understanding of the adsorption of HA on alumina 

or the influence of HA on the colloidal stability of alumina particles. Therefore, 

throughout this study the influence of humic acid will be compared with those 

of PAA. It has to be emphasized that the humics are not described as simple 
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polyelectrolytes, only certain properties of both substances are shown to be 

similar. 

 

The charge density of the PAA’s ionizable carboxyl groups is controlled by 

varying the pH. The polyelectrolyte features of PAA are characterized by a 

locally strong electrical field that exerts a long-range influence on charged 

species, such as colloid surfaces. In Fig. 5.1 the pH-dependence of the 

specific amount of negatively charged sites on polyacrylic acid is shown for 

different salt concentrations (0.01, 0.1 and 1.0 mol/l KNO3). It can be shown 

that an increase of the ionic strength from 0.01 to 1.0 mol/l facilitates the 

deprotonation of carboxylic groups through a salt-screening effect of the 

polyelectrolyte charge, which can induce conformational changes in the PAA 

in solutions. The role of these phenomena will be discussed in 5.3.1.The PAA 

molecules become more negatively charged with both increasing pH and ionic 

strength, and the maximum value was attained at a pH of about 9.7. Above 

this pH, the net proton consumption becomes constant in all KNO3 solutions. 
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Fig. 5.1. pH and ionic strength dependence of negatively charged sites 
amount of PAA in the presence of KNO3. 
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in Fig. 5.2. 

pH and ionic strength dependence of the HA charged groups 

he humic acid particles became more negatively charged with both 

increasing pH and ionic strength, and the maximum value  was  attained  at  a  

 

5.1.1.2 Acid-base properties of humic acid 
 
Humic acids behave like weak-acid polyelectrolytes, in addition to COOH 

groups, their negative charges may arise from the presence of phenolic OH 

and enolic OH, etc. (4). Humic acids develop negative charges and form 

electric double layers (EDLs) spontaneously due to the dissociation of the 

acidic groups. The electrostatic field inside and around the humic macroions 

shows considerable pH and ionic strength dependence. On the basis of 

potentiometric acid-base titration the net proton surface excess of the original 

orthic luvisol humic acid was determined over the range of pH 3.0 to 11.0 at 

different KNO3 concentrations (0.01, 0.1 and 1.0 mol/l). The pH-dependence 

of the specific amount of negatively charged sites on humic acid can be seen 

Fig. 5.2. 
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H ~ 11, due to the alkaline hydrolysis (140). 

mic acid was assumed. Among 

e numerous models available to describe the electrostatic effect, the diffuse 

composite material. It can be considered as a cross-linked network having 

romatic functionality and a variety of aliphatic functional groups and side 

s used in this 

ork (as described in 4.1.1.2) to differentiate such polydisperse mixtures of 

of the eight fractions 

pH of about 10.5. Above this pH, the net proton consumption started to 

become independent of ionic strength and increased infinitely, approaching 

p

 

The existence of two dissociation steps related to the stronger and weaker 

acidic groups (carboxylic and phenolic) of hu

th

double layer (DDL) approach has been chosen in this work. The net proton 

surface excess curves at different ionic strengths were fitted using the 

FITEQL(v.3.2) (141) software choosing the option of two pKs and the DDL 

electrostatic model. The sum of the stronger and weaker acidic groups 

calculated from the fitted curves agrees relatively well with the measured 

values at pH ~ 10.5. The calculated pK values are pK1 = 3.5 ± 0.1 for 

carboxylic groups and pK2 = 5.7 ± 0.1 for phenolic groups.  

 

5.1.1.3 Fractionation of humic acid and elemental composition of the 
fractions 

 

From both chemical and structural points of view, humic acid is an inherently 

a

chains.  The most serious hindrance in the characterization of HA, however, is 

the fact that analytical signals observed from HA and their processes 

generally are sums of numerous slightly different sub-signals, leading to their 

broadening and, thus, lowering their resolution and specificity.  

 

Due to the extreme complexity of HA mixtures, a fractionation method like 

ultrafiltration (UF) using different suitable membrane filters wa

w

macromolecules as a function of their molecular size.  

 

The humic acid was fractionated into eight different fractions corresponding to 

nominal molecular size ranges. The mass balance 
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howed an average recovery of ~87.8%. Table 5.1 lists the percent by weight 

 

Size fraction 
 

Wt% 

s

of the humic acid fractions obtained from the fractionation process. The micro- 

and ultrafiltered fractions in decreasing size are labeled Fr0 to Fr7. 

 

Table 5.1.  The percent by weight of the humic acid fractions. 
 

  

Fr0  (> 0.2 µm) 16.5 ± 4.9 

Fr1  (300 kDa-0.2 µm) 7.8 ± 0.5 

Fr2  (100-300 kDA)   8.5 ± 2.6 

) 

  

Fr3  (50-100 kDa 12.3 ± 1.2 

Fr4  (30-50 kDa)   6.1 ± 0.4 

Fr5  (10-30 kDa)   6.0 ± 0.6 

Fr6  (3-10 kDa) 10.7 ± 0.9 

Fr7  (1-3 kDa) 19.9 ± 1.5 

 

 

Elemental analysis is one of most simple and important means of 

haracterizing humic acids (HAs). Along with some ratios such as O/C, H/C, 

/C and S/C, analytical analysis can provide valuable information of the 

eight. 

he composition of the total humic acid sample is consistent with the 

c

N

composition and possible structure of HA and its fractions (142). Table 5.2 

lists the elemental analysis results for the original HA and its fractions.  

 

Results for humic acid size fractions show a clear trend: C, H, N, and S 

contents decrease and O content increases with decreasing molecular w

T

composition of its molecular size fractions (Table 5.2). The elemental O/C 

molar ratio data obviously show that the abundance of oxygen containing 

functional groups is larger in the smaller size fractions, which may gives an 

indication about the carboxylic and phenolic groups. They seem to increase 

regularly from Fr0 to Fr7, whilst the H/C atomic ratio, which as a measure  of 

–HC=CH– bonds can be used as an indication of the degree of aromaticity, is 

substantially lower (greater aromaticity) for the smaller molecular size 
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its fractions. 

  

fractions. These findings are in a good harmony with the results obtained from 

the acid-base titration, the FT-IR spectra and 13C-NMR measurements of the 

HA fractions (as described below). A similar increase in aromatic carbon 

content (143) or a decrease in the ratio of aliphatic to aromatic carbon (144, 

145), and also an increase in the proportion of aromatic hydrogen (146) with 

decreasing size of ultrafiltered humic acid samples has been recently 

published. 

 

Table 5.2. Elemental composition and molar ratios of soil extracted HA and 

 

 Elemental composition (wt%) a Molar ratio 
  Ash 

 

 
Sampl

 

C H N 
 

S 
 

  O b 

 

(wt%)
 

O/C 
 

H/C 
 

N/C 
 

S/C e 
 

HA 
 

43.4 ± 0.4 
   

 
 

46.84 
 

< 0.1 
 

0.81 
   

0.0064 5.08 ± 0.1 3.94 ± 0.1 0.74  ± 0.0 1.39 0.078 

0 

Fr1 42.73 ND 0.69 1.43 0.083 .0035

Fr2 37 ND 

Fr3 

Fr5 

Fr6 40.2 ± 0.1 4.36 ± 0.2 3.12 ± 0.1 0.40  ± 0.0 51.92 ND 0.97 1.29 0.067 0.0037 

Fr7 

tandard de iation calcu ted from fi e measurem nts. 
 difference
ined. 

 100%. 
, not deter

Fr 48.3 ± 0.2 5.92 ± 0.2 4.96 ± 0.2 0.53  ± 0.0 40.29 ND 0.63 1.46 0.088 0.0041 

46.7 ± 0.3 5.62 ± 0.2 4.51 ± 0.0 0.44  ± 0.0 0  

45.5 ± 0.2 5.37 ± 0.1 4.38 ± 0.1 0.38  ± 0.1 44. 0.73 1.41 0.083 0.0031 

42.9 ± 0.1 5.05 ± 0.1 4.01 ± 0.1 0.37  ± 0.0 47.67 ND 0.83 1.40 0.080 0.0032 

Fr4 41.8 ± 0.4 4.86 ± 0.1 3.82 ± 0.0 0.46  ± 0.0 49.06 ND 0.88 1.39 0.078 0.0041 

40.7 ± 0.2 4.51 ± 0.0 3.52 ± 0.0 0.35  ± 0.0 50.92 ND 0.94 1.32 0.074 0.0032 

37.5 ± 0.3 4.02 ± 0.1 2.49 ± 0.0 0.28  ± 0.0 55.71 ND 1.12 1.28 0.057 0.0028 
 

aS v la v e
bCalculated as  to
ND m

 

 properties of humic acid fractions 

he net proton surface excess of the original HA, and of its fractions, was 

onic strength of 0.01 

ol/l as can be seen in Fig. 5.3. 

 

5.1.1.4 Acid-base
 

T

determined over the pH range from 3.0 to 11.0 at an i

m
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y comparing the data for the fractions, it can be seen that although the 

hapes of the curves are similar, the amount of negatively charged groups 

fr

e

B

s

increases as the size of fractions decreased; i.e., the smaller the fractions, the 

larger their acidity over the entire range of pH. Assuming that beside phenolic 

groups (–OH) the most carboxylic groups (–COOH) are linked to aromatic 

rings of HA, the increase in acidity with decreasing size of fractions is in good 

harmony with the increasing aromaticity of samples, which was established by 
13C-NMR (Fig. 5.9 and Table 5.5) and UV measurements (Fig. 5.4 and Table 

5.4), as shown below, as well as with the increasing O/C molar ratio of 

actions (Table 5.2). The 13C-NMR spectra show, however that Fr0 is almost 

entirely aliphatic, and aromaticity is very low for Fr1, yet there are carboxyl 

functionalities certainly link d to the aliphatic carbons such as, e.g., fatty acids 

supposed to be constituents of the high molecular weight fractions. The net 

proton consumption started to increase infinitely, approaching pH ~ 11.0 due 

to the alkaline hydrolysis (140).  

Fig. 5.3. pH-dependent ionization of the whole humic acid and of its 
ultrafiltered fractions. 
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The curves were fitted using the FITEQL(v.3.2) choosing two pKs and the 

diffuse double layer (DDL) electrostatic model. The calculated pKs are 

summarized in Table 5.3. The calculated dissociation constants decreased 

with decreasing size of fractions (pK1 4.52 to 3.01, pK2 6.84 to 5.09). Perhaps 

the calculated two pKs values for each HA fraction are not true values but 

they only show us clearly the differences in the chargeable functional groups 

amounts between these HA size fractions where the carboxylic and phenolic 

groups amounts increase by decreasing the size of the HA fraction (from Fr1 

to Fr7).  

 
 
Table 5.3. The calculated ionization constants of the humic acid fractions. 
 

 

Sample 

 

pK1 
(strong) 

 

 

pK2 
(weak) 

 
 

Fr0 
 

4.52 
 

6.84 

Fr1 4.10 6.43 

Fr2 4.07 6.31 

Fr3 3.83 6.24 

Fr4 3.72 6.19 

Fr5 3.66 5.92 

Fr6 3.33 5.21 

Fr7 3.01 5.09 

 
 
5.1.1.5 Spectroscopic characterization of humic acid and its fractions 
 
5.1.1.5.1 UV-VIS spectroscopy  
 
The spectroscopic characterization of humic acid fractions clearly shows their 

chemical diversity. The UV-visible spectra of dilute alkaline solutions of the 

original humic acid and its fractions are shown in Fig 5.4. The fractions exhibit 

almost the same, featureless spectra as the solution of unfractionated 

material did, only the absorbance values showed systematic change 

especially in the near UV region. The absorbance of sample Fr0 is the lowest 
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over the entire wavelength range. The spectrum of the original unfractionated 

humic acid is situated among those for its fractions. The ratio of absorbance 

at 465 and 665 nm (E465/E665 ratio) being inversely related to either the degree 

of condensation of aromatic group or the molecular weight (145) was also 

determined for the fractions (shown in Table 5.4). In general, fulvic acids 

should have higher E465/E665 values (7.0 to 8.0) than  humic  acids  (E465/E665 

~3.0 to 5.0). It was found that the higher the E465/E665 ratio is, the higher the 

relative amount of the compounds of lower molecular weight.   
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Fig. 5.4.  UV-visible spectra for the humic acid and its ultrafiltered 
fractions. 

 

 

The E465/E665 ratio increases steadily from 5.30 to 11.57 with decreasing 

nominal size of fractions, and it is relatively high and rather match to the range 

of fulvic acids. The smaller size humic acids may be more compact than the 

larger ones. This is due to their larger content of aromatic carbon and a higher 

degree of condensation, as was indicated by the E465/E665 ratio, which 

increased with decreasing molecular weight. Similar findings for a fractionated 

humic acid have recently been reported (46, 52). 
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Table 5.4.  The E465/E665 values of the humic acid and its fractions. 
 

 

Sample 
 

E465/E665 
 

HA 
 

7.60 

Fr0 5.30 

Fr1 6.17 

Fr2 7.36 

Fr3 7.66 

Fr4 8.08 

Fr5 8.28 

Fr6 9.60 

Fr7 11.57 

 

 
5.1.1.5.2 FT-IR spectroscopy 
 
FT-IR spectroscopy has provided considerable insight into the reactivity, 

structural arrangement of the functional groups and aromatic/aliphatic 

domains in humic acids (147, 148). 

 

Fig. 5.5 shows the FT-IR spectra of the eight humic acid fractions of different 

nominal molecular size and of the unfractionated humic acid. In a more detail, 

the FT-IR spectra of two characteristic humic acid fractions (Fr1 and Fr7) are 

represented in Fig. 5.6. Absorption bands characteristic of humic acid (149) 

are observed in the FT-IR spectra as follows:  

a) a broad band around 3400 cm-1, generally attributed to O-H groups and, 

secondarily, N-H stretching of various functional groups, 

b) a weak (shoulder) at about 3080-3060 cm-1, attributed to aromatic C-H 

vibrations, 

c) two peaks at about 2920 and 2850 cm-1, preferentially ascribed to aliphatic 

CH3 stretching (Fig. 5.8 a) and aliphatic CH2 stretching modes (Fig. 5.8 b), 

d) pronounced peaks between 1750 and 1650 cm-1, due to aromatic -C=C- 

stretching, carbonyl vibrations (Fig. 5.8 c), phenolic R-C-OH and -C=O of 

H-bonded conjugated ketones, 
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e) the strong band centered between 1650 and 1580 cm-1, assigned to the 

characteristic asymmetric stretching (Fig. 5.7 b) of the carboxylate group 

R-COO- K+ (K+-humate), 

f) a band at 1547 cm-1 is assigned to the amide II vibration, 

g) the weak peak located at 1457 cm-1 is attributed to CH3 and CH2 

asymmetric bending modes (Fig. 5.8 d), 

h) the strong band between 1400-1380 cm-1 indicates the prominent 

symmetric R-COO- K+ carboxylate vibration (Fig. 5.7 c), 

i) broad peaks in the 1240 cm-1 region are ascribed to C-OH bending modes 

of phenols (Fig. 5.7 d) and of tertiary alcohols, 

j) a strong peak at 1050-1040 cm-1, generally attributed to C-O stretching of 

polysaccharides or polysaccharide-like compounds and/or Si-O stretching 

of silica impurities. 

 

The most interesting and important group of frequencies, from the point of 

view of interpreting the FT-IR spectra, is  the  group  due  to  the  R-COOH 

(R-COO- X+) part of the humic acid molecule. When a carboxylic acid 

changes into carboxylate, the C=O and C-O bond groups are replaced by two 

equivalent carbon-oxygen bonds. The ν(C=O) vibration, occurring in the 

carboxylic acid at about 1720 cm–1, shifts to a lower wavenumber and two 

new bands appear near 1600 and 1400 cm–1 corresponding to the R-COO- X+ 

antisymmetric and symmetric vibrations. This carboxylate ion may coordinate 

to a metal ion (X+ = Na+, K+, Ca++ …) in one of the following modes: 

unidentate complex, chelating (bidentate) structure or a bridging complex.  

 

The problem of FT-IR signal assignment however; as well as understanding 

the relationship between the observed spectral features and the molecular 

structure, can be difficult. Even the identification of fundamental vibrational 

frequencies often generates controversy. Several theoretical methods are 

useful in  analyzing  vibrational  spectra.  These  theoretical  methods  can  be 
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Fig. 5.5.  FT-IR spectra of the humic acid and its ultrafiltered fractions. 
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Fig. 5.6.  FT-IR   spectra  of   two   characteristic   humic    acid    fractions  

(F1 and F7). 

 

 

roughly divided into the following groups: classical methods, semi-empirical 

quantum mechanical methods and ab initio (first principal) quantum 

mechanical calculations. Straight forward ab initio molecular orbital calculation 

of the structure and vibrational frequencies has the advantage that the results 

are  completely  unbiased  since  there  is  no  arbitrary  assumption  involved.  
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Therefore, quantum mechanical Density Functional Theory (DFT) ab initio 

calculations on relatively short oligomers (humic acid model structures) may 

provide valuable information regarding the interpretation of the characteristic 

carboxylic acid group vibrations. 

 

The calculated normal mode displacements (eigenvectors) of the most 

important vibrations are presented in Fig. 5.7 (in an aromatic model system) 

and in Fig. 5.8 (in an aliphatic model system). 

 

νsym : -C= C- (1650 cm-1) νas : C-OO-K (1596 cm-1)

νsym : C-OO-K (1387 cm-1 ) νsym : C-Oph   (1252 cm-1)

(a) (b)

(c) (d)

 
 
Fig. 5.7.  Calculated normal mode displacements (eigenvectors) of the 

atoms in an aromatic model system. 
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There is general agreement among FT-IR experts that one of the main 

chemical reactions in the neutralization and metal complexation of humic 
substances is the conversion of R-COOH into R-COO- groups, which is 

indicated by the disappearance of the 1720-1710 cm-1 band and the gain in 

intensity of the 1560-1600 cm-1 and 1400 cm-1 bands. 

 

The complete absence of the FT-IR band in the 1720 cm-1 region (Figures 5.5 

and 5.6) indicates the total conversion of carboxylic groups into carboxylate 

anions (R-COO- K+) in all fractions and in the original humic acid spectrum. 

Thus, untreated humic acid and the eight size fractionated humic acids show 

chemical alteration with the complete absence of all carbonyl group vibrations. 

 

(a)

(b)

(c)

(d)

νsym  : CH3 str
(2920 cm-1)

νsym  : CH2 str
(2850 cm-1)

νasym  : R-COOH str
(1720 cm-1)

νbend  :  CH3 ; CH2
(1447 cm-1)

 

 

Fig. 5.8.  Calculated normal mode displacements (eigenvectors) of the 
atoms in an aliphatic model system. 
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The FT-IR spectra of the eight fractionated humic acids presented in Fig. 5.5 

show a strong decrease in IR intensity of the aliphatic vibrations (2920-2850 

cm-1) from Fr0 to Fr7. These results indicate that fractions with molecules of 

larger size contain humic molecules which are predominantly aliphatic. 

 

The increase of  the  characteristic  antisymmetric  carboxylate  band  

intensity (νasym R-COO- K+)  and  the  corresponding  symmetric  vibration 

(νsym R-COO- K+) from fraction Fr0 to Fr7 point out that molecules of smaller 

size have a higher content of carboxylate carbon. 

 

Using the Si-0 vibrational  intensity  as  an  internal  standard  one  is  able to 

determine  the  increase  of  the  pronounced  aromatic   peak   between 

1660-650 cm-1. Therefore, fractions with molecules of smaller size have 

higher contents of aromatic carbon.  

 
These trends accord with the 13C-NMR results (Fig. 5.9, Table 5.5). However, 

the clear parallels between molecular weight and phenolic groups as well as 

the aromatic character can hardly be derived from the FT-IR spectra alone. 

 

5.1.1.5.3 13C-NMR spectroscopy measurements 
 

Solid-state13C-NMR is one of the most promising techniques for studying the 

chemical structure of humic substances. In this work, solid-state  CP-MAS 
13C-NMR spectroscopy was used to gain more detailed information about the 

structure of the humic acid fractions. The spectra of the humic acid, and the 

humic acid size fractions are presented in Fig. 5.9, and the relative intensities 

of the chemical shift regions as well as the values of the ratio of aromatic to 

aliphatic carbon are summarized in Table 5.5. 13C-NMR analysis of the humic 

acid fractions reveals that the chemical forms of carbon vary between the 

different size fractions of humic acid. These spectra of the humic acids 

contain strong peaks at 0-45 and 45-110 ppm (aliphatic carbons), broad peak 

at 110-160 ppm (aromatic carbon), strong peak at 160-185 ppm (carboxyl 

carbon) and broad peak at 185-220 ppm (carbonyl carbon) (52, 150, 151).  

This suggests that the bulk  properties  of  the  carbon  functionalities  of  each 
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Fig. 5.9.  Solid state 13C-NMR spectra of the original humic acid and its 

ultrafiltered fractions. 
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humic acid fraction are similar to one another. However, the relative 

intensities of the different carbon shifts in the spectra differ significantly in the 

humic fractions.  

 

These measured values indicate that the Fr0, Fr1 and Fr2 fractions contain 

humic molecules which are predominantly aliphatic (0-110 ppm) with lower 

contents of aromatic and carboxyl carbons. By contrast, the Fr5, Fr6 and Fr7 

fractions with molecules of much smaller size have much higher contents of 

aromatic (110-160 ppm) and chargeable groups (phenolic and carboxyl 

carbons) (140-160 ppm and 160-185 ppm, respectively) and lower levels of 

aliphatic carbons. These findings agree with the results obtained  from  the 

FT-IR spectra (see 5.1.1.5.2). A detailed evaluation of these results can be 

seen in the discussion of the 19F-NMR measurements (see 5.2). 

 

 
 
Table 5.5. The relative intensities of different type carbons in humic acid 

and humic acid fractions determined by solid state 13C-NMR 
spectroscopy. 

 

 
 

Percentage distribution of carbon within indicated p.p.m. regions 
 

Sample 
 

0-45 
alkyl C 

 

 
45-110  

O-alkyl C 
 

 
110-160 

aromatic C 
 

 
140-160 

phenolic C 
 

 
160-185 

carboxyl C 
 

 
185-220 

carbonyl C 
 

 

Carom./Caliph. 

 
 

HA 
 

32.8 
 

37.1 
 

19.6 
 

5.40 
 

9.2 
 

1.3 
 

0.280 

Fr0  39.7 39.6 10.7 3.02 8.9 1.1 0.135 

Fr1  38.8 40.6 11.3 2.97 8.1 1.2 0.142 

Fr2  36.3 40.9 14.0 3.62 7.5 1.3 0.181 

Fr3  20.3 48.9 19.3 5.28 9.0 2.5 0.279 

Fr4  23.4 44.4 19.9 4.97 9.6 2.7 0.294 

Fr5  19.8 44.9 21.6 6.16 10.6 3.1 0.334 

Fr6  19.7 44.5 22.6 6.84 9.8 3.4 0.352 

Fr7  18.8 36.9 27.9 8.28 12.8 3.6 0.501 
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5.1.2 Surface charge characterization of aluminum oxide  
 

The pH-dependence of the surface charge (σ0) of aluminum oxide in aqueous 

medium at different concentrations of indifferent electrolyte (KNO3) can be 

seen in Fig. 5.10. It is observed that at low pH (< point of zero charge, PZC), 

σ0 becomes more positive with increasing background electrolyte 

concentration, whereas at high pH (> PZC) it becomes more negative. The 

PZC can be identified as the intersection point of σ0 vs. pH curves belonging 

to the different ionic strength. The experimental PZC value is at pH = 8.8.  

 

At low pH, although protons have a very high affinity for the surface, their 

adsorption cannot proceed, because the positive charges that are already 

adsorbed repel newly arriving protons. Equilibrium is attained when the 

chemical attraction is just cancelled by the electrostatic repulsion. This 

repulsion depends on the way in which the countercharge from the electrolyte 

( ) is distributed. If there are many NO  ions near  the  adsorbed  protons NO3
−

3
−

4 6 8 10
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Fig. 5.10. The surface charge of aluminum oxide as a function of pH in the 
presence of different KNO3 concentrations. 
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(at high electrolyte concentration) then the surface charge is more effectively 

screened, so that at given pH more protons can be adsorbed. By the same 

token, at high pH, the K+ ions are the counterions and the screening is 

improved if the KNO3 concentration is raised. Generally, this behavior 

corresponds to double-layer theories that with increasing electrolyte 

concentration the distribution of the countercharge also changes in such a 

way that promotes the accumulation of charge in the region close to the 

surface.  

 
5.2 Evaluation of the sorption properties of HA and its 

fractions based on 19F-NMR spectroscopy 
 
Associations between HA and hydrophobic organic compounds (HOCs) are 

especially noted since they have important consequences with regard to HOC 

solubilization, transport, and retention (11, 86). To better understand these 

processes, a detailed knowledge of the nature of HOC interactions with HA is 

required.  

 

The interaction mechanisms are poorly understood because of the HA 

heterogeneity. HA molecules have many different sorption chemical 

environments into which the HOC can sorb, and relative strength and mobility 

of those domains is highly dependent upon the carbon moieties available in 

the humic acid or individual fraction. One way to get better insight into these 

sorption mechanisms is to fractionate HA to decrease the chemical 

heterogeneity and to characterize a contaminant “19F-labeled probe” molecule 

(like hexafluorobenzene, HFB) sorbed into these fractions. It would be an 

ideal way to “see” the environment that the contaminant experiences and to 

give direct spectroscopic evidence for the binding mechanisms between the 

HOC and HA. 

 

The use of 19F-labeled probes has three distinct advantages in this respect. 

First, fluorinated analogues of many HOC are commercially available. 

Second, it is an element normally  present  at  very  low  levels  in  most  soils.  
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Third, the natural abundance of 19F is 100%, and it has an NMR sensitivity 

almost equal to that of 1H (138). 

 

In the following, the solid-state 19F-NMR study of the sorptive uptake of HFB 

by the humic acid and its fractions is discussed. The sorption data is 

correlated with the 13C spectrum and molecular size range for each fraction to 

assess the impact of size fractionation on the interaction between HFB and 

HA. 

 

Humic Acid. Integration of the unfractionated HA 13C-NMR spectrum (Fig. 

5.9, Table 5.5) shows that 69.9% of the carbon is aliphatic, 19.6% is aromatic, 

and 9.2% is carboxylic moieties.  

 
The 19F spectrum obtained for the interaction of HFB with the whole humic 

acid shows two distinct resonances that have been attributed to different HFB 

sorption domains (138) (Fig. 5.11, HA).  

 

The most prominent domain is centered at -159.7 ppm. The resonance also 

has a broad, low intensity shoulder on the upfield side (~-170 to ~–175 ppm). 

The intensity in the sidebands from this peak is unevenly distributed with the 

downfield sidebands having more signal than the upfield sidebands, this is 

particularly evident when comparing the two sidebands nearest the central 

peak. This contains the majority of the 19F signal, and thus the majority of the 

HFB sorbed to the system. The broadness of this resonance and the distance 

of observed sidebands give evidence of a significant amount of chemical 

anisotropy. Due to the apparent anisotropy this resonance is attributed to 

immobile or motionally restricted HFB.  

 

The –168.1 ppm peak has no discernable sidebands and an 18 Hz line width 

at half height (LWHH), significantly more narrow than that  of  the –159.7  ppm  
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Fig. 5.11. 19F solid-state MAS NMR spectra of HFB sorbed to HA and its 
fractions. Within the spectra T denotes signal due to PTFE 
contamination, 1 denotes spinning sideband for immobile 
domain, and 2 denotes spinning sideband for –163 ppm 
resonance. 
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resonance which has a 1500 Hz LWHH. Due to the narrowness of this peak it 

is attributed to loosely bound, mobile HFB. 
 

The general progression of the chemical character of the fractionated humic 

acid with decreasing molecular size is a decrease in aliphatic character, 

increase in aromatic character, and increase in carboxylic character. Of these 

fractions the carboxylic character has the highest variability but clearly 

increases in relative amount with decreasing apparent molecular weight. The 

humic acid fractions can generally be divided into three different groups based 

on their molecular weight, 13C-NMR (as  shown  in  Fig.  5.9  and  Table  5.5),  

and 19F-NMR spectra as described below.  

 

Fr0, Fr1, and Fr2. This fractions group has, on average, approximately 13 % 

more aliphatic, 39% less aromatic, and 10% less carboxylic carbon contents 

relative to the whole HA. These fractions account for 33% of the mass of the 

whole HA (Table 5.1). 

 

All display a strong, broad signal in the ~–160 ppm HFB sorption domain, 

have high aliphatic, low aromatic, and low carboxylic contents. This dominant 

sorption domain is termed “rigid” due to its very broad nature (116, 138, 152). 

The broad nature of the resonance indicates a wide variety of different 

chemical moieties likely present with which HFB can interact (Fig. 5.11, Fr0, 

Fr1 and Fr2). This observation appears logical as the largest molecules would 

likely have the most heterogeneous composition and structural variability. The 

rigid sorption domains all have asymmetrical peaks with higher intensities 

being observed on the downfield side. This suggests that this sorption domain 

is skewed to moieties that yield lower electron density around the F nuclei. 

This would likely result from sites with high electron withdrawing strengths. 

Structures such as carbonyl or other oxygen bearing moieties could produce 

such results.  
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The –168 ppm resonance is very narrow in all of the spectra acquired. It is 

very sharp in both the 8 kHz MAS experiments and the static experiments. 

The fact that this peak does not appreciably broaden in the static experiments 

(Fig. 5.12) gives strong evidence that the resonance is the result of highly 

mobile HFB molecules. This mobility is not due to the HFB existing as a 

nonaqueous phase liquid  (NAPL)  phase  because  neat  HFB  resonates  at 

–163.0 ppm. Nor can it be attributed to dissolved HFB in the aqueous medium 

present in the humic acid  (the resonance of HFB in the aqueous medium was 

measured at –163.2 ppm). The most probable source of this resonance is 

highly mobile HFB which is weakly physisorbed to surface groups in which the 

molecule is free to rapidly “hop” from site to site. The rapid movement 

between different sites with rather weak interactions would result in a very 

sharp and well defined resonance. 

 
 
 
Fig. 5.12.  19F solid-state static NMR spectrum (32400 scans) of HFB 

sorbed to Fr0. 
 

 

The spectra of Fr1 and Fr2 display a signal due to PTFE contamination 

resulting from abrasion of the PTFE  coating  on  the  magnetic  stir  bar  used 
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during ultrafiltration. The main PTFE resonance occurs at –120.4 ppm with 

two spinning sidebands located on either side of the main peak.  

 

Fr3 and Fr4. Integration of the 13C spectrum for Fr3 and Fr4 (Fig. 5.9, Table 

5.5) show that these fractions have intermediate aliphatic, aromatic, and 

carboxylic contents as well as intermediate apparent molecular weights. 

These fractions account for 18.4% of the mass of the whole HA. These 

fractions display HFB sorption spectra which can be perceived as transitioning 

from the sorption domains found in the heavy fractions to those observed in 

the light fractions.  

 

The 19F spectrum obtained for the interaction of HFB with Fr3 or Fr4 show 

three distinct resonance regions at ~–160, ~–164, and ~–168 ppm (Fig. 5.11, 

Fr3 and Fr4). The ~–160 ppm sorption domain changes significantly from a 

very broad, somewhat featureless domain, to a smaller, narrower domain with 

multiple peaks and slightly different chemical shifts. Fr4 displays this transition 

the most clearly, where, the ~–160 ppm resonance is actually composed of 

two peaks, one broad resonance and a second, sharper resonance (see 

insert in Fr4 spectrum). These two resonances represent the averages of two 

different chemical environments, the broader domain centered at –159.9 ppm 

corresponds to the broad domain in the heavier fractions and the narrower 

resonance centered at –160.6 ppm corresponds to the broad domain in the 

lighter fractions. All peaks observed in all the other fractions are present to 

some degree in this fraction. The highly mobile peak at –168 ppm is clearly 

evident. The ~–164 ppm peak is also complicated and appears to be due to 

two resonances closely overlapping (again, see insert in Fr4 spectrum). The 

static spectrum from this experiment (Fig. 5.13) gives no indication that this 

resonance is caused by a separate HFB nonaqueous phase liquid (NAPL). 

This observable transition phase gives evidence that there are different 

sorption domains in humic acid which are dependent upon the molecular 

weight ranges and carbon moieties found in the humic matrix. This 

dependence gives indication that the different size fractions have different 

chemical and/or structural differences  which  have  significant  impact  on  the 
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type of sorption environment available to nonionic, nonpolar compounds. 

There is a very weak PTFE contaminant signal at –120 ppm in Fr3 spectrum 

but there is no discernable PTFE contaminant signal in Fr4 spectrum. 

 

Fig. 5.13.  19F solid-state static NMR spectrum (32400 scans) of HFB 
sorbed to Fr4. 

 

 

Fr5, Fr6 and Fr7. Integration of the 13C spectrum for these fractions (Fig. 5.9, 

Table 5.5) show that they have, on average, carbon contents that are 

approximately 12% less aliphatic, 22% more aromatic, and 20% more 

carboxylic relative to the whole HA. Thirty-seven percent of the mass of all the 

fractions is isolated in these three lightest fractions. These fractions have 

lower aliphatic, higher aromatic, and higher carboxylic contents than the 

whole HA. These fractions display three unique sorption domains. The –164 

ppm sorption domain is very sharp, however it still results in an observable 

spinning sideband (~-136 ppm). This spinning sideband is evidence that this 

sorption domain is not due to liquid-like environment but a more rigid 

environment with a broad chemical shift range. This conclusion is also 

supported by the static spectrum which shows no evidence of a highly  mobile 

resonance at –164 ppm. This resonance is actually a composite of two peaks 

at –164.1 and –163.9 ppm (see insert in Fr7  spectrum).  In  comparison,  the 
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–168 ppm domain is much more narrow with a clear signal present in the 

static spectrum. The –160 ppm resonance is composed of two peaks, a 

sharper peak with the same average chemical shift as the broader peak. This 

is seen in the odd shape of the spinning sideband located at –130 ppm (see 

insert in Fr5 and Fr7 spectra) which suggests a sharper, narrow peak on top 

of a broader peak. These peaks suggest two different sorption domains in 

which HFB finds a similar local chemical environment which differs only in its 

relative mobility. There is a very weak PTFE contaminant signal at –120 ppm 

in Fr5 and Fr6 spectra but there is no discernable PTFE contaminant signal in 

Fr7 spectrum. 

 

The previous 19F-NMR measurements indicate that the humic acid molecules 

have many different sorption chemical environments which nonionic 

molecules such as HFB can sorb into. The relative strength and mobility of 

those domains is highly dependent upon the carbon moieties available in the 

humic acid or individual fraction. Smaller humic acid molecules have at least 

three sorption sites that are more defined and homogeneous than the sorption 

domains found in larger humic acid molecules. The presence of these 

different sorption domains gives evidence that humic acid cannot be looked at 

strictly as a simple partitioning medium but a more complicated sorbent such 

as the soil organic matter sorbents depicted in recent articles by Weber et al. 

(153) and Pignatello et al. (154, 155). 

 

5.3  Interaction between organic macromolecules and 
alumina 

 
 

Interactions between hydrous oxides and naturally occurring organic materials 

such as humic and fulvic acids are of great importance in environmental 

processes. Natural soil and water systems, and relatively simple models of 

them (e.g. dispersions of metal oxides in organic  acid  solutions),  have  been 

described in comprehensive reviews (78, 156, 157). Most of these 

investigations are related to the pH dependence of the interactions since the 
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soil and water equilibria are largely pH-dependent, but less attention has been 

paid to the effect of the ionic strength.  

 

Considering the charging behavior of the alumina in aqueous electrolyte 

solutions (Fig. 5.10), three particular pH values were chosen for the 

adsorption study. Table 5.6 shows the surface charges of alumina at the 

different pH values and salt concentrations used. 

 
Table 5.6.  The surface charge of the aluminum oxide at different pHs and 

ionic strengths. 
 
 

 

σ0 (C/m2) 
 
 

pH 
0.01 M KNO3 0.1 M KNO3 1.0 M KNO3 

5.5 0.112 0.155 0.198 

7.5 0.036 0.058 0.077 

9.5 -0.021 -0.035 -0.047 

 

 
5.3.1  Adsorption of polyacrylic acid on alumina 
 
Based on the structural features of humic substances, the HA could be 

modeled by assuming that its molecules are strongly hydrated, fairly flexible, 

carboxylic groups containing, polyelectrolyte molecules (37, 38, 40-42). In 

view of these results, e.g. the characteristics of the HA adsorption isotherms 

observed in this work can be understood by applying PAA to compare its 

properties with those of natural polyelectrolytes. It has to be emphasized that 

the humics are not described as simple polyelectrolytes, only certain 

properties of both compounds are assumed to be similar. 

 

The adsorption isotherms of the PAA on alumina at different pH values are 

given in Fig. 5.14. It is seen that the adsorption increased sharply at low PAA 

concentration (strong adsorption part) and reaches a plateau with increasing 
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PAA concentration for all pHs. In addition, the adsorption of PAA becomes 

smaller with increasing pH. The strong adsorption of PAA is derived from the 

electrostatic attraction force between ionized PAA and the positively charged 

sites on the alumina surface (ligand-exchange mechanism) as well as the 

interaction of hydrogen bonding between undissociated PAA and hydroxyl 

groups on the alumina surface. Since the PZC of alumina is 8.8 and the pKa 

of PAA is about 4.5 (158), the electrostatic attraction force between PAA and 

the alumina surface is decreased with increasing pH, resulting in the   

decrease of PAA adsorption with pH. At high pH, the decrease in the 

adsorption of PAA is also caused by the increased intersegmental repulsion 

between the already adsorbed dangled PAA and the newly arriving stretched 

ones. 
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Fig. 5.14.  Effect of pH on the adsorption isotherms of PAA on alumina at 

0.01 M KNO3. 
 

 

The increase in PAA adsorption with decreasing pH is quite common (159- 

161). The supposed polymer conformations on the alumina surface are shown 

schematically in Fig. 5.15. It is clear that the higher adsorption amount at the 
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low pH is attributed to the coiled conformation (coiled because the carboxylic 

groups are slightly ionized, where 34.5% are dissociated, and exhibit low 

intrapolymer-chain electrostatic repulsion) that causes more of the polymer 

molecules to be needed for a complete surface coverage. The PAA adsorbs 

and remains approximately in the same coiled conformation on the positively 

charged alumina surface [Fig. 5.15 (a)]. When the pH is raised, ionization of 

PAA generates more negative charges in the polymer chain (80.0% of the 

carboxyl groups are dissociated) which reduces the extent of coiling. The 

polymer still strongly adsorbs on the surface because of the positive charges 

on the solid  [Fig. 5.15 (b)] but the maximum adsorption amount that can be 

achieved is lower. By raising the pH above the PZC of alumina (PZC = 8.8) 

the solid particles became mainly negatively charged like the polymer and 

under these conditions the adsorption amount is much smaller than that  at 

pH = 7.5 (Fig. 5.14). The lowest adsorption amount at pH 9.5 is attributed to 

the PAA highly stretched conformation (98.9% of the PAA’s carboxyl groups 

are dissociated), with the result that less of the polymer is needed for 

complete surface coverage. On the other hand, the strong electrostatic 

repulsion between the negatively charged PAA and the negative sites  on  the 

alumina particles surfaces at this pH would cause the polymer to ‘dangle’ from 

the particle into the aqueous phase, being held to the particle by the hydrogen 

bonding [Fig. 5.15 (c)].  
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Fig. 5.15.  Schematic representaion of the variations of PAA conformation 
at the alumina/water interface under changing pH conditions.  
(a) pH ~ 5.5; (b) pH ~ 7.5; (c) > 9.5. 
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The importance of the ionic strength for PAA on alumina is shown in Fig. 5.16, 

the adsorption amounts increase significantly with increasing KNO3 

concentration at pH = 7.5. The effect of increasing ionic strength is to screen 

out the electrostatic repulsion between the carboxylic groups, and hence lead 

to an increase in the adsorption density of PAA on alumina. 
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Fig. 5.16.  Adsorption isotherms of PAA on alumina at pH = 7.5, effect of 
ionic strength on the adsorption isotherm. 

 
 
 

From the experimental adsorption isotherms (Figures 5.14 and 5.16) one can 

determine the surface area occupied by one PAA molecule, σm, in the 

adsorbed state corresponding to the plateau by using the following    

dependence, σm (nm2) = MWPAA/(Γmax NA) (162), where MWPAA is the 

polyelectrolyte molecular weight, Γmax, is the amount of the adsorbed 

polyelectrolyte on a planar surface corresponding to the isotherm plateau (in 

mg/m2), and NA is Avogadro’s number. The value of σm for the PAA calculated 

from the adsorption PAA isotherms in Figures 5.14 and 5.16 using the above 

equation is shown in Table 5.7. 
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Table 5.7.  Area occupied by one PAA molecule on the alumina 

surface at different pH and ionic strength values. 
 

 

Conditions 
 

 

σm (nm2) 
 

CKNO3 
mol/l 

 

 

pH = 5.5 

 
 

pH = 7.5 

 
 

pH = 9.5 

 

0.01 
 

127.77 
 

202.58 
 

377.53 

0.10  151.01  

1.00  123.97  

 
 

From the data in Table 5.7, an important conclusion can be drawn. At high pH 

and low salt concentration (at pH = 9.5 and 0.01 M KNO3) the polyelectrolyte 

molecules are adsorbed relatively flatly on the surface, which can be 

described by a large fraction of train segments. The few segments of the 

molecule that are not in direct contact with the surface protrude relatively far 

into the solution due to lateral repulsion effects. Consequently the adsorbed 

layer formed is very thin. At lower pH and higher salt concentration (at pH = 

7.5 and 1.0 M KNO3) the adsorbed polyelectrolyte layer can be described by a 

large fraction of adsorbed segments in loops and tails. Due to the high fraction 

of segments adsorbed in loops the adsorbed amount per surface area is 

relatively high.  
 
5.3.2 Adsorption of humic acid on alumina 
 
Figures 5.17 and 5.18 show the adsorption isotherms of humic acid, for 

varying aqueous chemistry conditions. It is observed that the humic acid 

adsorbed amount increases with decreasing pH and increasing ionic strength. 

The adsorption isotherms show an initial steep slope indicating a high affinity 

character, followed by a “pseudo” plateau at elevated equilibrium 

concentrations. These features of the adsorption isotherms are commonly 

observed for the adsorption of humic substances onto mineral particles (35, 

67, 69, 72, 80, 84, 163). As shown in Fig. 5.2 the degree of HA dissociation 

increases with increasing pH value, thereby increasing the apparent  solubility  
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of HA. Consequently, the adsorbing tendency between HA on Al2O3 is 

decreased due to a lowered hydrophobic interaction (67, 164). In addition, the 

surface of aluminum oxide, with the point of zero charge at around 8.8, 

becomes more negatively charged with an increase of the pH. This event 

further decreases the adsorption tendency owing to the increased repulsive 

force between HA, ionized and negatively charged molecules, and the sorbent 

(69). 
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Fig. 5 .17.  Adsorption isotherms of humic acid onto alumina, 0.01 M KNO3. 
Effect of pH on the adsorption. 

 

 

Sorption of humic acid increased with decreasing pH in response to positive 

charge development on the alumina particles. This pattern was consistent 

with the ligand-exchange mechanism, as previously suggested for humic 

substances by other authors (80, 165). Sorption of humic substances by 

ligand exchange is believed to occur in the following sequence (78): 
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AlO(O)C-Hu + H2O                  (5.3)AlOH2
+ -O(O)C-Hu

AlOH2
+ -O(O)C-Hu                   (5.2)AlOH2

+ + Hu-C(O)O-

AlOH2
+                                      (5.1)AlOH + H+

 

The first step of this process is protonation  (eq. 5.1), which is believed to 

render the surface hydroxyl group more exchangeable.  The  protonation  step  

is responsible, in part, for the pH dependence  of  the  fractional  sorption,  but 

may not be necessary if the concentration of humic carboxyl groups is 

sufficiently high (78).  The  humic  carboxyl  groups  may  then  form  an 

outer-sphere surface complex with the protonated hydroxyl group (eq. 5.2). 

Ligand exchange occurs in (eq. 5.3) in which Hu-COO- replaces OH2, yielding 

an inner-sphere complex.  
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Fig. 5.18.  Adsorption isotherms of humic acid onto alumina, pH = 7.5. 

Effect of ionic strength on the adsorption. 
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The isotherms seem to be of the Langmuir type according to the classification 

of Giles et al. (58). The adsorption isotherms were modeled with the Langmuir 

isotherm equation. Monolayer adsorption capacities (apparent amounts 

adsorbed) calculated from the linearized form of the Langmuir equation are 

summarized in Table 5.8 and plotted in Fig. 5.19 as a function of pH and ionic 

strength. The most significant trend is the increase in the apparent amounts 

adsorbed with increasing ionic strength independent on the pH value. This is 

however most pronounced in the acidic region.  This trend is expected since 

humate macroions are negatively charged at each pH (Fig 5.2), while the 

surface charge of aluminum oxide changes from positive to negative with 

increasing pH (Fig. 5.10). 
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Fig. 5.19.  Apparent amount of humate adsorbed on aluminium oxide at 
different pH and ionic strength. 
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Table 5.8.  Adsorption capacities of HA on alumina at different pH and 

ionic strength values evaluated by Langmuir equation. 
 

 
Conditions 

 

 
Adsorption capacity, mg/g 

 
 

pH = 5.5 
 

 

pH = 7.5 
 

 

pH = 9.5 
 

 
cKNO3 
mol/l 

 

 

Langmuir 
(regression) 

 

 

Measured
 

Langmuir 
(regression)

 

Measured
 

Langmuir 
(regression) 

 

Measured

 

0.01 
 

169.5 
(0.97) 

 

170.2 
 

 

81.9 
(0.98) 

 

83.5 
 

50.7 
(0.98) 

 

54.8 

 

0.10 
 

234.5 
(0.98) 

 

232.9 
 

 

140.2 
(0.97) 

 

136.8 
 

78.6 
(0.95) 

 

82.5 

 

1.00 
 

333.6 
(0.99) 

 

 

336.6 
 

 

203.7 
(0.96) 

 

197.3 
 

126.8 
(0.95) 

 

132.1 

 

 

Regarding the analogy between humic substances and polyelectrolytes like 

PAA, it seems probable that the conformation of the humic acid molecules in 

solution also influences the conformation of the adsorbed layer, as shown 

schematically in Fig. 5.20. As an example two cases with “extreme” conditions 

are discussed. The condition of the first situation is a low electrolyte 

concentration combined with a high pH value [Fig. 5.20 (a)]. At high pH values 

most HA functional groups (carboxylic and phenolic) are dissociated causing 

a high charge density. Due to electrostatic repulsion between these functional 

groups, HA molecules have a rather extended conformation in the bulk   

solution. Such an extended conformation is emphasized due to the absence 

of indifferent electrolyte; no screening by the salt ions occurs. After adsorption 

the majority of the charged groups of the HA molecules are in the vicinity of 

the surface, leading to a relatively flat conformation and a relatively low 

adsorbed amount. The other extreme is a high concentration of electrolyte 

combined with a low pH value [Fig. 5.20 (b)]. The few charges associated with 

HA, due to the low degree of dissociation, are screened by the salt ions and 

consequently the humic acid molecules show a tightly compressed and 

compact conformation in solution. The humic acid molecules adsorb as 
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compressed entities and retain their structure resulting in an enhanced 

adsorption. 

+++++ -

(a) (b)

++ - ---

 

Fig. 5.20.  Schematic representation of the variations of HA network-like 
conformation at the alumina/water interface under changing pH 
and ionic strength conditions.(a) low  ionic strength and high pH; 
(b) low pH and high ionic strength. 

 

 

By comparing the adsorption isotherms of PAA (Figures 5.14 and 5.16) and 

HA (Figures 5.17 and 5.18) on alumina, the isotherms showed high affinity 

sorption at low surface coverage that rapidly reached sorption maxima for 

PAA, at which the alumina surface is completely covered by PAA. Further 

adsorption does not occur. This kind of isotherm followed a H-type curve. It 

could be proved by using the electrophoretic mobility measurements, where 

as shown in Fig. 5.25, in the plateau region the net negative electrophoretic 

mobility of alumina particles does not increase by increasing the PAA 

adsorbed amount. The isotherms of the sorption of HA on alumina followed a 

L-type curve, in which the isotherm showed high affinity sorption (at up to 60% 

HA surface coverage) exactly as in the case of PAA adsorption but in the 

plateau region, by increasing the HA concentration the adsorbed amount 

increases gradually presumably due to hydrophobic humic-humic interactions 

resulting in multiple layering of humic acids on alumina which could also be 

proved by measuring the electrophoretic mobility where the net negative 

electrophoretic mobility of alumina particles increases gradually by increasing 

the HA adsorbed amount in the plateau region of the HA adsorption isotherm 

as shown in Fig. 5.23. Consequently, PAA as a model for the HA adsorption 

on the mineral surfaces could not be applied in the plateau region. 
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5.3.3  Adsorption of humic acid fractions on alumina 
 

Due to its extreme complexity, the HA was fractionated into three HA fractions 

to study their adsorption on alumina and to prove the chemical and structural 

differences between these HA size fractions. These HA fractions are 

classified as Fr(1,2) larger than 100 000, Fr(3,4) 100 000-30 000 and Fr(5,6) 

30 000-3 000 daltons. The adsorption isotherms of Fr(1,2), Fr(3,4) and Fr(5,6) 

as well as the unfractionated HA on aluminium oxide at pH = 5.5 and 0.01 

mol/l KNO3, are shown in Fig. 5.21. All adsorption isotherms showed high 

affinity sorption at low surface coverage followed by a slight increase in the 

adsorbed amount in the plateau region, indicating an L-type adsorption 

isotherm. It is also evident here that the adsorbed amount increases with 

increasing the HA molecular size [Fr(1,2) > Fr(3,4) > Fr(5,6)] where the 

maximum adsorbed amounts of Fr(1,2) and Fr(3,4) are about 2.3 and 1.9 

times respectively greater than that of Fr(5,6). As shown from the 13C-NMR 

results in Fig. 5.22, this observation suggests that the larger HA molecular 

size fractions which have more aliphatic carbons (more hydrophobic fractions)  
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Fig. 5 .21.  Adsorption isotherms of humic acid and its fractions onto 
alumina at pH = 5.5 and 0.01 M KNO3. 
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are stronger adsorbed in comparison to the smaller molecular size fractions 

(more hydrophilic) which have higher contents of aromatic carbons. Moreover,  

because the adsorption is site specific through the hydroxyl functional groups 

on alumina surfaces, only limited numbers of chargeable groups of the three 

HA fractions may react with the alumina surfaces and by suggesting limited 

surface sites on alumina surfaces, so lower amount of Fr(5,6) was required to 

cover up the alumina surfaces compared with the Fr(3,4) and by the same 

token a lower amount of Fr(3,4) was required compared to Fr(1,2). It is also 

observed that, the decrease in the rise of the adsorption isotherm in the 

plateau regions by decreasing the HA fraction size  [from Fr(1,2)  to Fr(5,6)] 

which indicates a lower contribution of the hydrophobic interactions is due to 

the decrease in the aliphatic carbons as shown in Fig. 5.22. Similarly, 

previous workers (53, 70, 166) have directly or indirectly indicated that 

dissolved humic substances with higher molecular size exhibited higher 

adsorbed amounts on mineral surfaces compared to the smaller (more 

hydrophilic) ones. 
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Fig. 5.22. Aliphatic, aromatic, carboxylic, phenolic and carbonylic carbon 

contents percentage  of  the  HA  fractions  as  measured  by 
13C-NMR. 
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The adsorption isotherms were modeled with the Langmuir isotherm equation. 

Monolayer adsorption capacities calculated from the linearized form of the 

Langmuir equation are summarized in Table 5.9. The most significant trend is 

the increase in the apparent amounts adsorbed with increasing HA fraction 

molecular size.  

 
 
Table 5.9.  Adsorption capacities of HA fractions on alumina evaluated 

by Langmuir equation. 
 
 

 
Adsorption  

capacity, mg/g 
 

 
 
    HA 
fractions  

Langmuir 
(regression) 

 

 

Measured 

 

Fr(1,2) 
 

263.15 
(0.98) 

 

268.3 
 

Fr(3,4) 
 

243.9 
(0.99) 

 

240.1 
 

Fr(5,6) 
 

131.5 
(0.99) 

 

 

126.6 
 

 

 

5.3.4  Colloidal stability and electrophoretic mobility 

 

Colloids play a decisive role in the distribution and transport of organic and 

inorganic pollutants in the environment. On the one hand, they are the most 

reactive constituents of aquatic and soil systems. A large proportion of 

contaminants are sorbed on their surfaces. On the other hand, colloids as 

carrier substances, are responsible for the long distance movement (migration 

or transport) of chemicals, e.g. for the landing of pollutants in the 

groundwater. Indeed, these transport processes strongly depend on the 

stability of the colloids (82, 167, 168). The interactions of humic substances 

with natural minerals constitute a puzzling domain of investigation and 

because of the heterogeneity of natural systems it is  difficult  to  estimate  the  

81 



Chapter 5                                                                                     RESULTS AND DISCUSSION 
 

 
 

importance of several factors controlling colloidal stability without using model 

systems. Based on the polyelectrolyte features of humic substances, 

polyacrylic acid (PAA) is a well defined polymeric substance that can be used 

as a model compound for the study of HA to facilitate the understanding of the 

influence of HA on the colloidal stability of alumina particles. 

 

The influence of humic acid on the electrophoretic mobility and particle size of 

alumina particles in 0.01 M KNO3 as a function of HA adsorbed amount at 

different pH values (5.5, 7.5 and 9.5) are shown in Figures 5.23 and 5.24. At 

pH = 5.5 and 7.5 [below the PZC of alumina (pH = 8.8)], pure alumina 

exhibited positive electrophoretic mobility (Fig. 5.23). As the HA adsorbed 

amount increased, the electrophoretic mobility decreased significantly causing 

reversal of surface charge from positive to negative  whilst, above the PZC (at  

pH = 9.5), the addition of humic acid resulted in a strong shift in 

electrophoretic mobility toward more negative values. The hydrodynamic 

radius of alumina particles as a function of HA adsorbed amount can be seen 

in Fig. 5.24. According to the representation here, the colloidal suspension is 

stabilized when the z-average particle size is equal or close to 215 nm when 

alumina particles were determined in the absence of humic acid. On the 

contrary, the system is fully destabilized when its value reaches its maximum. 

Comparing the measured curves at different pH values  containing  only  0.01 

M  KNO3,   it   is   obvious,   that   pure   alumina suspensions remained stable 

at pH values 5.5 and 7.5 (< PZC of alumina) due to the charge repulsion 

between the positively charged alumina particles  [Fig. 5.27 (a)], but at pH 9.5 

(near to the PZC) the negative surface charge on the pure alumina particles is 

not enough to stabilize the system. The addition of small amounts of humic 

acid  (≤ 63.1 and ≤ 24.3 mg HA/g Al2O3 at pH 5.5 and 7.5, respectively) 

resulted in aggregation and settling of the particles. Addition of larger amounts 

of humic acid again increased the colloidal stability due to increased negative 

surface charge [Fig. 5.27 (c)]. 
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Fig. 5.23.  Influence of humic acid on the electrophoretic mobility of 
alumina at 0.01 M KNO3. 
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Fig. 5.24.  Hydrodynamic diameter of coated alumina particles as a function 
of HA adsorbed amount at 0.01 M KNO3. 
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Likewise, Figures 5.25 and 5.26 show the electrophoretic mobility and the 

hydrodynamic radius of the alumina particles as a function of PAA adsorbed 

amount at different pH values (5.5, 7.5 and 9.5). Fig. 5.25 shows a rapid 

decrease in the electrophoretic mobility at PAA concentrations lower than in 

the case of HA (Fig 5.23). This is because the PAA’s charge density is more 

negative under the given conditions of pH and KNO3 concentration (Figures 

5.1 and 5.2). This also results the occurrence of the full destabilization of the 

system at lower PAA adsorbed amount, as shown in Fig. 5.26, where small 

amounts of adsorbed PAA result in charge neutralization and destabilization 

of alumina suspensions compared to that in the case of the Al2O3/HA system 

(Fig. 5.24). The influence of humic and polyacrylic acids on the surface 

charge and colloidal stability of alumina particles is obviously in a quite 

analogous manner. Nevertheless, a marked difference is observed (Figures 

5.23 and 5.25), where adsorption of the HA induces a decrease of the 

electrophoretic mobility when the HA adsorbed amount increases, whereas 

the adsorption of PAA induces a plateau value. The phenomenon responsible 

for the no existence of the electrophoretic mobility plateau in case of HA is 

presumably due to the hydrophobic humic-humic interactions. 

 

To elucidate the colloidal stability mechanism of alumina particles, the values 

of electrophoretic mobilities and average particle size of alumina as a function 

of the HA adsorbed amount are compared in Fig. 5.27. To facilitate the 

comparison, the optimal HA and PAA flocculation dosages and the isoelectric 

points (IEPs) are presented in Table 5.10. The optimal flocculation dosages of 

HA and PAA are shifted to a lower concentration by increasing the pH values. 

This displacement corresponds exactly to a shift in the IEP of the particles. As  

shown in Fig. 5.27 and presented in Table 5.10, the results obtained in this  

study are consistent with the charge neutralization mechanism, where the 

optimum dosage for flocculation corresponds well to the IEP. This indicates 

that no electric repulsive forces exist between the alumina particles at this HA 

dosage (critical dosage of HA) [Fig. 5.27 (b)]. HA or PAA does not cause 

bridging flocculation because if bridging were important, a smaller dosage of 

HA or PAA (< IEPs) would be expected to flocculate the  alumina  particles  at  
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Fig. 5.25.  Influence of PAA on the electrophoretic mobility of alumina at 
0.01 M KNO3. 
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Fig. 5.26.  Hydrodynamic diameter of coated alumina particles as a 
function of PAA adsorbed amount at 0.01 M KNO3. 
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pH 7.5, where the conformation of HA or PAA is relatively expanded. The 

expanded HA or PAA could bridge the particles together. This is clearly 

contrary to the experimental observation made here. The flocculation is then 

mainly due to electrostatic interactions and the classic bridging mechanism 

plays an insignificant role in the present system. 

 

0 50 100 150
     Adsorbed  amount (mgHA/gAlumina)

 

-2

-1

0

1

2

3

el
ec

tro
ph

or
et

ic
 m

ob
ili

ty
 [1

0-8
m

2 V-1
se

c-1
]

(a) (c)(b)

0

500

1000

1500

2000

Z 
av

er
ag

e 
pa

rti
cl

e 
si

ze
 [n

m
]

 
 
Fig. 5.27.  Schematic representation of the alumina particles stability at 

different HA coverage. (a) stabilization by electrostatic repulsion, 
(b) flocculation by charge neutralization, (c) restabilization by 
electrostatic repulsion. 
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Table. 5.10. Optimal aggregation dosage and IEP in terms of relative HA and 

PAA concentrations (mg/g Al2O3). 
 

 

HA  
 

PAA  
 

pH values 
 

5.5 
 

7.5  
 

5.5 
 

7.5 
 

Optimal aggregation dosage 
 

63.1 
 

24.3  
 

14.5 
 

8.5 

IEP 64.0 23.5  13.6 8.1 

 
 
 
5.4. Interactions between 2,4-Dichlorophenol and HA/Al2O3 

complexes 
 

Naturally occurring soil colloids are multicomponent associations of minerals 

and organic matter (67, 71, 169). Organic matter modifies the 

hydrophilic/hydrophobic character of the mineral surfaces making them more 

hydrophobic and, therefore, more reactive to hydrophobic organic compounds 

(HOCs). Although some studies have addressed the interaction between 

HOCs and HA, much of them still remains unclear. This is partially due to the 

fact that systematic investigations in a wide range of environmental conditions 

are often thwarted by the experimental difficulty that humic acid, partially 

dissolves at natural pH and that there are only a few approaches by which the 

concentrations of the HOC can be readily measured in the presence of 

dissolved HA. One way to avoid this complication is to use immobilized humic 

acid by adsorbing it on alumina to form a HA/Al2O3 complex. Since this kind of 

complex can be easily separated from the supernatant, the measurement of 

the adsorption of 2,4-dichlorophenol (2,4-DCP) in this study becomes easy 

and is not influenced by the dissolved HA. Moreover, immobilized HA on 

Al2O3 can be studied in a wide range of environmental conditions such as pH 

and ionic strength as shown below.  

 

Because the conformation and polarity of HA play an important role in its 

adsorption onto alumina (as described before in 5.3.2) and its ability to bind 

2,4-DCP at the solid/liquid interface, a systematic study of the effects of pH 

and ionic strength was undertaken. 
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The sorption isotherms of 2,4-DCP on alumina that had been coated with 

different amounts of HA at pH 5.5 and ionic strength 0.01 M KCl are shown in 

Fig. 5.28. In these experiments, foc values were varied over  the  range 

0.0128-0.0599 (30-140 mg HA/g Al2O3) to encompass the low organic carbon 

concentrations found in soil. The adsorption of 2,4-DCP on the bare alumina 

is very low (the maximum measured adsorbed amount was 0.034 µmol DCP/g 

Al2O3 at 0.52 mmol/l equilibrium concentration of 2,4-DCP), while on HA/Al2O3 

complexes the sorption is governed by the amount of adsorbed humic acid 

and expressed as µmol DCP/g HA/Al2O3 complex. The bound 2,4-DCP 

amounts increased by increasing the surface coverage with HA, but the 

general course of the isotherms were similar. These sorption isotherms can 

be described as a linear isotherm, which indicates a partitioning process 

between the 2,4-DCP and HA/Al2O3 complex or is due to physical trapping in 

the microvoids of the network of the adsorbed HA (170, 171). The sorption 

process  can   be   discussed   in   terms   of   sorption   coefficients   that   are 
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Fig. 5.28.  Sorption isotherms of 2,4-dichlorophenol onto HA/Al2O3 

complexes (30-140 mg HA/g Al2O3) at pH = 5.5 and 0.01 M KCl. 
Symbols represent experimental data and lines represent 
regression fits of respective isotherm equation. 
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characteristic of the individual systems.  The  R2  values  (goodness  of   fit 

criterion) computed by linear regression for the adsorption isotherms are also 

presented in Fig. 5.28 for each complex.  

 

The sorption coefficients are summarized in Table 5.11. When these values 

were plotted against the organic carbon fraction of the complexes, foc (Fig. 

5.29), the results indicate a linear relationship (R2 = 0.9974). The slope of line 

is the organic carbon normalized partition coefficient with a value Koc = 373 

ml/g or log Koc = 2.572. This is in good agreement with the Koc values reported 

in the extensive literature data for sorption of 2,4-dichlorophenol by soils and 

sediments (172) whilst it is a little bit lower than the value of 2.75 which was 

estimated mathematically (173) and those of 2.84 and 2.89 which were 

estimated experimentally in refs (174 and 175), respectively. 

 

The above critical comparison verifies that the Koc values of the present study 

are reasonable. The reason for the smaller sorption constants (log Koc  values  

shown in Table 5.11) obtained in the present study compared to the literature 

values is probably due to the slightly different soil conditions in which the HA 

was found. 

 
 
Table 5.11.  Sorption coefficients of 2,4-DCP on the HA/Al2O3 complexes 

with different surface coverage. 
 

 

Sorption coefficients  
HA/Al2O3 

complexes 
 

Kd 
 

Koc 
 

log Koc 
 

  30 mg/g 
 

 4.56 
 

354.8 
 

2.550 

  60 mg/g  9.26 357.5 2.553 

100 mg/g 16.04 382.0 2.582 

140 mg/g 21.99 367.1 2.564 
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Fig. 5.29.  Dependence of 2,4-DCP sorption coefficient on the organic 
carbon fraction, foc. 

 

 

The effects of varying aqueous  chemistry  conditions  on  the  sorption  of 

2,4-DCP on the HA/Al2O3 complexes which contains the smallest HA 

coverage (30 mg HA/gAl2O3, foc = 0.0128) are shown in Figures 5.30 and 5.31 

and the calculated partition coefficients at different pH and ionic strength 

values are listed in Table 5.12. They demonstrate that the magnitudes of the 

sorption coefficients of 2,4-DCP are strongly pH and ionic strength dependent 

(176, 177, 178-181). Figure  5.30  presents  the  adsorption  isotherms  for 

2,4-DCP at three different pH values and at 0.01 M  KCl.  The  sorption  of 

2,4-DCP decreases with increasing pH value. The decrease in the binding 

capacity with increasing pH is due to the dissociation of 2,4-DCP. The 

greatest adsorption occurs at pH 5.5, where most of the 2,4-DCP is present 

as the neutral phenol [pK= 7.85 (182)]. Considerably less adsorption  occurs 

at pH 6.5  and  7.5  where  the  phenolate  form  is  also  present  in   solution  

(α = 4.27% and 30.87% at pH 6.5 and pH 7.5, respectively, that were 

estimated according  to  α = 1/(1+10(pKa-pH))  (183).  The  increase  of  the  pH  
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Fig. 5.30.  Adsorption isotherms of 2,4-DCP on 30 mg HA/g Al2O3 complex 
at 0.01 M KCl and different pH values. 
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Fig. 5.31.  Adsorption isotherms of 2,4, DCP on 30 mg HA/g Al2O3 complex 
at different ionic strengths and pH = 5.5. 
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caused also a deprotonation of functional groups in the HA. Hence, both 

effects have to be considered responsible for the decreased sorption.  On the 

one hand, the electrostatic repulsion increases between 2,4-DCP and 

HA/Al2O3. On the other hand, the hydrophobicity of the 2,4-DCP was 

decreased.  Furthermore, it is also attractive to consider the change of the 

conformation of the HA to a more expanded form (see Fig. 5.20) leading to an 

overall loss of hydrophobic cavities for the sorption.  

 
Similarly, at fixed pH value (pH 5.5) the adsorption of 2,4-DCP increases with 

an increase of the ionic strength according to Fig. 5.31. Such an increase is 

attributed to the screening effect (184). The higher the ionic strength, the 

better the screening of the electrostatic repulsion between the functional 

groups in the HA and the higher the bound amount of 2,4-DCP. Besides this, 

the adsorption ability of 2,4-DCP may also increase with ionic strength owing 

to the salting-out effect (82). 
 

Table.5.12. 2,4-DCP sorption isotherm parameters on the 30 mg HA/g Al2O3 
complexes at different pH and ionic strength values. 

 

 
Conditions 

 

Sorption coefficients 
 

pH = 5.5 
 

pH = 6.5   

pH = 7.5 
 

 
CKCl 
mol/l 

 

 

Kd 
 

Koc 
 

log Koc 
  

Kd 
 

Koc 
 

log Koc 
 

Kd 
 

Koc 
 

log Koc 
 

0.01 
 

4.56 
 

354.8 
 

2.550 
 

3.50 
 

272.0
 

2.435  
 

1.471 
 

114.4 
 

2.058 

0.10 7.58 589.7 2.771        

1.00 20.02 1558.4 3.192        

 
 

 

To demonstrate the role of the bound HA conformation and due to the 

available sorption domains in the binding of organic pollutants, the polarity 

parameter (I1/I3 ratio) of a non-polar hydrophobic organic compound (pyrene) 

on the bound HA was investigated. It is expected that the conformation 

changes depending on the solution parameters affect the sorption ability of 
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HA for HOC. The I1/I3 ratio of pyrene in the aqueous suspension of the 30 mg 

HA/Al2O3 complex at different pH and ionic strength values is shown in Fig. 

5.32. It was found that, the hydrophobicity of the bound HA decreases (high 

I1/I3 ratio) by increasing the pH value or decreasing the ionic strength. As the 

pH increases or the ionic strength decreases, the enhanced ionization of HA 

may induce mutual repulsion among the negatively charged functional groups 

on it and the conformation of the HA is in a more stretched form as well. The 

“hydrophobic domains“ of the HA are reduced by this change in conformation 

and the I1/I3 ratio is then increased. Similarly, by decreasing  the  pH value or 

increasing the ionic strength the negative charges on HA are screened and 

consequently the humic molecules show a tightly compressed and compact 

conformation, possibly altering the size of the “hydrophobic domains“ which 

makes the pyrene environment more hydrophobic leading to a decrease of 

the I1/I3 ratio. 
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Fig. 5.32.  Fluorescence intensity ratio  (I1/I3)  of  pyrene  in  presence  of 
30 mg HA/g Al2O3 complex at different pH and ionic strength 
values. 
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6  Summary 
 

The aim of the present study was to investigate the effects of the interactions 

between two important soil components, mineral oxides and humic 

substances, on the sorption of the hydrophobic organic compounds (HOCs) 

under laboratory conditions selected to model the soil systems. The model 

system used in this study consisted of aluminum oxide and an  extracted  soil  

humic  acid (HA). 2,4-dichlorophenol (2,4-DCP) was taken as a HOC 

contaminant model. 

 

Due to the extreme complexity of HA, it is difficult to elucidate the sorption 

mechanisms of HOCs to HA based on its currently measured structural 

characteristics. An alternative technique to decrease the chemical 

heterogeneity prior to sorption investigations is the fractionation of the HA. 

The HA was fractionated by using the ultrafiltration technique into eight 

different molecular size fractions. HA and its fractions were characterized 

using potentiometric acid-base titration, elemental analysis and different 

spectroscopic methods (NMR, UV-VIS and FT-IR spectroscopy) to obtain 

more information on the chemical structures and the functional groups of 

these macromolecules. The results presented in this work revealed that the 

elemental composition, the degree of aromaticity, and the amounts of major 

functional groups changed with the apparent molecular weight of the fractions. 

The general progression of changes in the chemical character of the 

fractionated HA with decreasing molecular size is a decrease in aliphatic 

carbon and an increase in chargeable groups. Moreover, the smaller humic 

acid fractions have larger content of aromatic carbon.  

 

The differences in the structural characteristics, chemical environments and 

functional group contents of the HA fractions affect the adsorption of HOCs. 

Solid-state 19F-NMR was used to study the sorptive uptake of 

Hexafluorobenzene (HFB) by the humic acid and its fractions. It was found 

that HA molecules have different chemical environments into which HOCs 

such as HFB can sorb. Small HA molecules have at least three sorption sites 
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(“rigid”, “soft” and other new domains) that are more clearly defined and 

homogeneous than the sorption domains found in larger HA molecules. The 

larger molecular weight fractions are dominated by a rigid sorption domain. It 

is proposed that this sorption domain may result from regions composed of 

aliphatic moieties. The presence of these different sorption domains gives 

evidence that the interactions of HA and HOC cannot be strictly viewed as a 

simple partitioning process. 

 

The adsorption of soil extracted HA on colloidal-sized aluminium oxide 

particles was investigated to elucidate how solution chemistry affects the 

formation and nature of organic surface coatings. A systematic study of the 

effects of pH and ionic strength on HA adsorption was performed. To better 

understand the binding mechanisms these results were compared to those of 

polyacrylic acid (PAA). The amount of HA and PAA adsorbed onto aluminium 

oxide particles decreased with increasing pH values for all solutions of 

constant ionic strength. In KNO3 solutions at fixed pH values, the adsorption 

of HA and PAA generally increased with increasing ionic strength. This 

suggests that the conformation of the HA or PAA in solution significantly 

determines their structures on the mineral surface. At high pH and low salt 

concentration the HA or PAA molecules are adsorbed in a relatively stretched 

form on the surface and the adsorption was low, whilst, at low pH and high 

salt concentration a substantial fraction of the adsorbed HA or PAA is 

collapsed on the surface, which results in a relatively high adsorbed amount. 

In general, the surface complexation ligand exchange is the most important 

adsorption mechanism of HA and PAA onto the alumina particles regardless 

of solution chemistry. 

 

By comparing the adsorption isotherms of HA and PAA on alumina, it was 

found that the PAA as a model for the HA adsorption on the mineral surfaces 

could not be applied in the plateau region because the PAA adsorption 

isotherms on alumina is of H-type  while  the  HA  adsorption  isotherms  

follow  the Langmuir-type (L) curve. The HA isotherms showed high affinity 

sorption at low surface coverage exactly as in the case of PAA adsorption but 

in the plateau region the HA adsorbed amount increases gradually 
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presumably due to hydrophobic humic-humic interactions resulting in multiple 

layering of humic acids on alumina.  

 

By comparing the adsorption of the HA fractions on alumina surfaces, it was 

found that the adsorbed amount increases with increasing HA molecular size. 

The adsorption isotherms are of the L-type curves. Furthermore, an increase 

in the rise of the adsorption isotherm in the plateau regions by increasing the 

HA fraction size was also observed which indicates a higher contribution of 

the hydrophobic interactions (hydrophobic humic-humic interactions) due to 

the increase in the aliphatic carbon and the decrease in the chargeable 

groups. 

 

The colloidal stability of the alumina dispersions containing increasing 

amounts of added HA and PAA was monitored using the dynamic light 

scattering technique. The maximum aggregate size was observed around the 

zero electrophoretic mobility indicating the importance of the charge 

neutralization mechanism, whilst the bridging mechanism does not seem to 

play a significant role in the studied system.  

 

The sorption results of 2,4-dichlorophenol (2,4-DCP) on the immobilized 

humic acid at different pH and salt concentrations revealed that the value of 

the sorption coefficient decreases as the ionic strength decreases or the pH 

value increases which gives direct evidence for the importance of the 

conformation of the immobilized HA. These sorption isotherms can be 

described as a linear isotherm, which indicates that the sorption of 2,4-DCP  

is predominantly a partitioning process between the aqueous phase and the 

immobilized humic acid. 
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