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A three-dimensional approach based on momentum vectors as variables for solving the three-nucleon Fad-
deev equation in first order is presented. The nucleon-deuteron breakup amplitude is evaluated in leading order
in the nucleon-nucleonsNNd T matrix, which is also generated directly in three dimensions avoiding a sum-
mation of partial wave contributions. A comparison of semiexclusive observables in thedsp, ndpp reaction
calculated in this scheme with those generated by a traditional partial wave expansion shows perfect agreement
at lower energies. At about 200 MeV nucleon laboratory energies deviations in the peak of the cross section
appear, which may indicate that special care is required in a partial wave approach for energies at and higher
than 200 MeV. The role of higher order rescattering processes beyond the leading order in theNN Tmatrix is
investigated with the result that at 200 MeV rescattering still provides important contributions to the cross
section and certain spin observables. The influence of a relativistic treatment of the kinematics is investigated.
It is found that relativistic effects become important at projectile energies higher than 200 MeV.
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I. INTRODUCTION

During the last two decades calculations of nucleon-
deuteronsNdd scattering based on momentum space Faddeev
equations[1] experienced enormous improvement and re-
finement. It is fair to state that below about 200 MeV pro-
jectile energy the momentum space Faddeev equations for
three-nucleons3Nd scattering now can be solved with very
high accuracy for the most modern two- and three-nucleon
forces. A summary of these achievements is given in Ref.
[2]. The approach to 3N scattering described in Ref.[2] is
based on using angular momentum eigenstates for the two-
and three-body systems. For low projectile energies this pro-
cedure is certainly physically justified due to arguments re-
lated to the centrifugal barrier. However, to probe the strong
interaction at shorter distances one has to go to higher pro-
jectile energies, where the algebraic and algorithmic work
carried out in traditional partial wave(PW) decomposition
can be quite involved. A more crucial hurdle is posed by the
fact that in 3N scattering calculations for projectile energies
of a few hundred MeV the number of partial waves needed
to achieve numerical convergence proliferates, and limita-
tions with respect to computational feasibility and accuracy
are being reached. It appears therefore natural to abandon
PW representations completely and work directly with vector
variables, if one wants to calculate 3N scattering at higher
energies. As an aside, the use of vector variables is common
practice in bound state calculations based on variational[3]
and Green’s function Monte Carlo methods[4], which are
carried out in coordinate space.

Momentum space calculations within the Faddeev scheme
which did not employ a PW decomposition were first carried

out for a system of three bosons[5,6]. Here the momentum
space Faddeev equations were solved for the bound as well
as the scattering state. In this work we want to employ real-
istic nucleon-nucleonsNNd interactions in a 3N scattering
calculation. This means we have to incorporate spin degrees
of freedom into the formulation of the Faddeev equations.
Since the input to any Faddeev calculation is the solution of
the Lippmann-Schwinger(LS) equation for the two-nucleon
T matrix, we start from the formulation ofNN scattering
developed in Ref.[7]. There we chose an approach based on
the total helicity of theNN system as spin variable. From our
point of view this is the preferred starting point to later
progress to the 3N system.

In this work we consider the first term of the multiple
scattering series built up by the Faddeev equations, rather
than solve the full Faddeev equations for three nucleons, and
concentrate on semiexclusive breakup observables. Of par-
ticular interest are the spin-transfer coefficients in thesp, nd
charge exchange reaction on the deuteron, which recently
have been measured at IUCF with a projectile energy of
197 MeV [8] and at RCNP with a projectile energy of
346 MeV [9]. Since these measurements are carried out at
“intermediate energies,” one can speculate that it may be
sufficient to consider only the first order term in the multiple
scattering series. Furthermore, since the projectile energies
are high, we will consider relativistic effects as far as the
kinematics is concerned.

In Sec. II we formulate theNd breakup process in a three-
dimensional(3D), nonrelativistic Faddeev scheme. We de-
rive the leading term of the fullNd breakup amplitude, where
NN T-matrix elements are given in the momentum-helicity
basis defined in Ref.[7]. In Sec. III we introduce relativistic
kinematics into this formulation. We will not consider a
boost of theNN Tmatrix [10] nor Wigner’s rotations[11] of
the spin. The observables for thesp, nd charge exchange re-
action are introduced in Sec. IV. In Sec. V we present and
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discuss our calculations for thesp, nd charge exchange reac-
tion in the proton-deuteronspdd breakup process. Here only
the outgoing neutron is detected after the breakup. We
present calculations of spin averaged differential cross sec-
tions, neutron polarizations, proton analyzing powers, and
polarization transfer coefficients at different energies. We
also compare our calculations with traditional PW calcula-
tions. Finally, we summarize in Sec. VI.

II. THE NONRELATIVISTIC Nd BREAKUP AMPLITUDE

In the Faddeev scheme the operatorU0
full for the Nd

breakup process is given as[2]

U0
full = s1 + PdTF. s2.1d

Here TF is the Faddeev operator obeying the Faddeev
equation f1g for the breakup process of three identical
particles,

TF = TP+ TG0PTF. s2.2d

The operatorT stands for theNN t matrix, and P is a
permutation operator defined as

P ; P12P23 + P13P23. s2.3d

The free 3N propagator is given byG0. The matrix ele-
ments of the breakup amplitudeU0

fullsp, qd of Eq. s2.1d are
defined as

U0
fullsp, qd ; kpqms1ms2ms3t1t2t3uU0

fulluq0ms1
0 t1

0Cd
Mdl

= kpqms1ms2ms3t1t2t3us1 + PdTFuq0ms1
0 t1

0Cd
Mdl,

s2.4d

where

upqms1ms2ms3t1t2t3l ; uqms1t1lupms2ms3t2t3l s2.5d

is the final, not-antisymmetrized free 3N state. The quan-
tities msi, ti si =1, 2, 3d are the spins and isospins of the
three nucleons. The initial state, in which only the deu-
teron stateuCd

Mdl is antisymmetrized, is given by

uq0ms1
0 t1

0Cd
Mdl ; uq0ms1

0 t1
0luCd

Mdl. s2.6d

The indexMd indicates the projection of total angular mo-
mentum of the deuteron along an arbitraryz axis, ms1

0 , t1
0

are the spin and isospin of nucleon “1” acting as the pro-
jectile. Without loss of generality nucleon “1” is singled
out as projectile, while the other two nucleons, “2” and
“3,” form the two-nucleons2Nd subsystem, i.e., the deu-
teron in the initial state. Jacobi momentap andq are used
to describe the 3N kinematics in the final state,

p = 1
2sk2 − k3d, s2.7d

q = 2
3fk1 − 1

2sk2 + k3dg = k1 − 1
3k lab. s2.8d

Here thek i’s si =1, 2, 3d represent the laboratory momenta
of the three nucleons. Definingk lab as the laboratory mo-
mentum of the projectile and applying momentum conser-
vation

k lab = k1 + k2 + k3, s2.9d

leads to Eq.s2.8d. In the initial stateq0 is the relative
momentum of the projectile to the target deuteron and is
related tok lab as

q0 = 2
3k lab. s2.10d

For clarity of description we will in the following denote
the breakup amplitude asU0

fullsp, qd and suppress all other
quantum numbers.

In this work we only want to consider the leading term of
the full breakup operatorU0

full. This means we only consider
the leading term in the Faddeev operatorTF of Eq. (2.2) and
define the breakup operatorU0 in first order in theNN T
matrix as

U0 = s1 + PdTP. s2.11d

The matrix elements ofU0sp, qd with respect to the final
and initial states from Eqs.s2.5d and s2.6d are then given
as

U0sp, qd ; kpqms1ms2ms3t1t2t3uU0uq0ms1
0 t1

0Cd
Mdl

= kpqms1ms2ms3t1t2t3us1 + PdTPuq0ms1
0 t1

0Cd
Mdl.

s2.12d

From now on we mean by theNd breakup amplitudesor
breakup amplituded the matrix elementU0sp, qd given in
Eq. s2.12d and by the fullNd breakup amplitudesor full
breakup amplituded the matrix elementU0

fullsp, qd given in
Eq. s2.4d.

The breakup amplitudeU0sp, qd from Eq. (2.12) is com-
posed out of three terms,

U0sp, qd = U0
s1dsp, qd + U0

s2dsp, qd + U0
s3dsp, qd s2.13d

with

U0
s1dsp, qd ; 1kpqms1ms2ms3t1t2t3uTPuq0ms1

0 t1
0Cd

Mdl,

s2.14d

U0
s2dsp, qd ; 1kpqms1ms2ms3t1t2t3uP12P23TPuq0ms1

0 t1
0Cd

Mdl,

s2.15d

U0
s3dsp, qd ; 1kpqms1ms2ms3t1t2t3uP13P23TPuq0ms1

0 t1
0Cd

Mdl.

s2.16d

Here the final free 3N states are labeled 1, meaning that
nucleons 2 and 3 form the 2N subsystem. The spin and
isospin quantum numbers must be read in the order 123.
Applying the permutation operatorP12P23 to the final state
of U0

s2dsp, qd given in Eq.s2.15d leads to

U0
s2dsp, qd = 1kP23P12pqms1ms2ms3t1t2t3uTPuq0ms1

0 t1
0Cd

Mdl

= 3kpqms1ms2ms3t1t2t3uTPuq0ms1
0 t1

0Cd
Mdl. s2.17d

This is now the final state where nucleons 1 and 2 form
the 2N subsystem. Accordingly, the spin and isospin quan-
tum numbers associated with the three nucleons read in
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the order 312. In order to have the same final states as
U0

s1dsp, qd in Eq. s2.14d, we need to transform the final
state such that nucleons 2 and 3 form the 2N subsystem.
This transformation is achieved by the following relation
among the Jacobi momentaf12g

p1 = − 1
2p3 − 3

4q3, q1 = p3 − 1
2q3, s2.18d

where the labels 1 and 3 indicate the nucleon being
singled out. This leads to

U0
s2dsp, qd = 1ks− 1

2p − 3
4qdsp − 1

2qd
3 ms2ms3ms1t2t3t1uTPuq0ms1

0 t1
0Cd

Mdl .

s2.19d
Using another relation between Jacobi momentaf12g

p1 = − 1
2p2 + 3

4q2, q1 = − p2 − 1
2q2, s2.20d

we can obtainU0
s3dsp, qd in a similar fashion as

U0
s3dsp, qd = 1ks− 1

2p + 3
4qds− p − 1

2qd
3ms3ms1ms2t3t1t2uTPuq0ms1

0 t1
0Cd

Mdl .

s2.21d

Since U0
s2dsp, qd and U0

s3dsp, qd differ from U0
s1dsp, qd only

in their variables, it is sufficient to work out an expression

only for one of them, which we choose to beU0
s1dsp, qd.

For calculating subsequentlyU0
s2dsp, qd and U0

s3dsp, qd one
only has to perform the following replacements:
for

U0
s2dsp, qd:ht, mjh1,2,3j → ht, mjh2,3,1j,

p → − 1
2p − 3

4q, q → p − 1
2q, s2.22d

for

U0
s3dsp, qd:ht, mjh1,2,3j → ht, mjh3,1,2j,

p → − 1
2p + 3

4q, q → − p − 1
2q. s2.23d

For calculatingU0
s1dsp, qd we start by inserting the follow-

ing completeness relation for the free 3N system:

o
ms1ms2ms3

t1t2t3

E dpE dqupqms1ms2ms3t1t2t3l

3kpqms1ms2ms3t1t2t3u = 1 s2.24d

twice into Eq.s2.14d, which leads to

U0
s1dsp, qd = o

ms18 ms28 ms38

t18t28t38

E dp8E dq8kpqms1ms2ms3t1t2t3uTup8q8ms18 ms28 ms38 t18t28t38l

3 o
ms19 ms29 ms39

t19t29t39

E dp9E dq9kp8q8ms18 ms28 ms38 t18t28t38uPup9q9ms19 ms29 ms39 t19t29t39lkp9q9ms19 ms29 ms39 t19t29t39uq0ms1
0 t1

0Cd
Mdl

= o
ms28 ms38 t28t38

E dp8kpms2ms3t2t3uTsEpdup8ms28 ms38 t28t38l

3 o
ms29 ms39 t29t39

E dp9kp8ms28 ms38 t28t38ukqms1t1uPuq0ms1
0 t1

0lup9ms29 ms39 t29t39lkp9ms29 ms39 t29t39uCd
Mdl. s2.25d

In arriving at the last equality we used the fact thatT acts only in the two-particle subsystem together with momentum space
properties of the initial state.

The NN T matrix is calculated at a center of mass(c.m.) energyEp of the 23-subsystem

Ep ;
p2

m
=

3

4m
sq0

2 − q2d + Ed, s2.26d

which does not necessarily correspond to the intermediate relative momentap8. The deuteron binding energy is repre-
sented byEd, andm stands for the nucleon mass.

Using the relations for Jacobi momenta given in Eqs.(2.18) and(2.20) the evaluation of the permutations in Eq.(2.25) leads
to
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kp8ms28 ms38 t28t38ukqms1t1uPuq0ms1
0 t1

0lup9ms29 ms39 t29t39l

= 1kp8ukquq0lup9l2 1kms1ms28 ms38 t1t28t38ums1
0 ms29 ms39 t1

0t29t39l2 + 1kp8ukquq0lup9l3 1kms1ms28 ms38 t1t28t38ums1
0 ms29 ms39 t1

0t29t39l3

= 1kp8ukqu− p9 − 1
2q0lu− 1

2p9 + 3
4q0l1 1kms1ms28 ms38 t1t28t38ums39 ms1

0 ms29 t39t1
0t29l1

+ 1kp8ukqup9 − 1
2q0lu− 1

2p9 − 3
4q0l11kms1ms28 ms38 t1t28t38ums29 ms39 ms1

0 t29t39t1
0l1

= dsp8 − pddsp9 − p8ddms1ms39
dms28 ms1

0 dms38 ms29
dt1t39

dt28t1
0dt38t29

+ dsp8 + pddsp9 + p8ddms1ms29
dms28 ms39

dms38 ms1
0 dt1t29

dt28t39
dt38t1

0, s2.27d

where
p ; 1

2q + q0, p8 ; − q − 1
2q0. s2.28d

As an aside, the variables are arranged such that eachd function only contains one integration variable. Inserting Eq.
s2.27d into U0

s1dsp, qd in Eq. s2.25d leads to

U0
s1dsp, qd = o

ms38 t38

kpms2ms3t2t3uTsEpdupms1
0 ms38 t1

0t38lkp8ms38 ms1t38t1uCd
Mdl

+ o
ms28 t28

kpms2ms3t2t3uTsEpdu− pms28 ms1
0 t28t1

0lk− p8ms1ms28 t1t28uCd
Mdl

= o
ms8t8

hkpms2ms3t2t3uTsEpdupms1
0 ms8t1

0t8lkp8ms8ms1t8t1uCd
Mdl + kpms2ms3t2t3uTsEpdP23upms1

0 ms8t1
0t8l

3kp8ms8ms1t8t1uP23
−1uCd

Mdlj

= o
ms8t8

kpms2ms3t2t3uTsEpds1 − P23dupms1
0 ms8t1

0t8lkp8ms8ms1t8t1uCd
Mdl

= o
ms8t8

akpms2ms3t2t3uTsEpdupms1
0 ms8t1

0t8lkp8ms8ms1t8t1uCd
Mdl. s2.29d

In arriving at the last equality of Eq.s2.29d we made use of the antisymmetry of the deuteron state,uCd
Mdl, and defined

akpms2ms3t2t3uTsEpdupms1
0 ms8t1

0t8l as

akpms2ms3t2t3uTsEpdupms1
0 ms8t1

0t8l ; kpms2ms3t2t3uTsEpds1 − P23dupms1
0 ms8t1

0t8l. s2.30d

We denote the matrix elementakpms2ms3t2t3uTsEpdupms1
0 ms8t1

0t8l as physical representation of theNN T matrix, physical
meaning that theNN basis statesupms2ms3t2t3la contain the individual spins and isospins of the nucleons.

Since the deuteron contains only two definite angular momentum states, it is reasonable to apply the standard partial wave
expansion

uCd
Mdl = o

lsjmt
E dp8p82up8slsd jm;tkp8slsd jm;tuCd

Mdl = o
l
E dp8p82up8sl1d1Md;0lclsp8d. s2.31d

Here up8slsd jm;tl is the standard partial wave basis, andclsp8d represent the standards andd waves of the deuteron. The
projectionkp8ms8ms1t8t1uCd

Mdl on the deuteron state in Eq.s2.29d is then explicitly worked out as

kp8ms8ms1t8t1uCd
Mdl = o

l
E dp8p82kp8ms8ms1t8t1up8sl1d1Md;0lclsp8d

= kt8t1u0lo
lm

Csl11;m, Md − md E dp8p82kp8up8lmlkms8ms1u1, Md − mlclsp8d

= CS1

2

1

2
0;t8t1Do

lm
Csl11;m, Md − mdYlmsp̂8dCS1

2

1

2
1;ms8ms1Ddms8+ms1,Md−mclsp8d

= CS1

2

1

2
0;t8t1DCS1

2

1

2
1;ms8ms1Do

l
Csl11;Md − ms8 − ms1, ms8 + ms1dYl,Md−ms8−ms1

sp̂8dclsp8d.

s2.32d

Finally, inserting Eq.s2.32d into Eq. s2.29d we obtain the first part of the breakup amplitudeU0
s1dsp, qd as
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U0
s1dsp, qd = o

ms8t8
akpms2ms3t2t3uTsEpdupms1

0 ms8t1
0t8laCS1

2

1

2
0;t8t1DCS1

2

1

2
1;ms8ms1D

3 o
l

Csl11;Md − ms8 − ms1, ms8 + ms1dYl,Md−ms8−ms1
sp̂8dclsp8d

=
s− d1/2+t1

Î2
o
ms8

CS1

2

1

2
1;ms8ms1Dakpms2ms3t2t3uTsEpdupms1

0 ms8t1
0t8la

3 o
l

Csl11;Md − ms8 − ms1, ms8 + ms1dYl,Md−ms8−ms1
sp̂8dclsp8d. s2.33d

Equation(2.33) may serve as a starting point for further expressions forU0
s1dsp, qd to be used in the explicit calculations. It

shows howU0
s1dsp, qd depends on the PW projected components of the deuteron and on theNN T matrix in a physical

representation. In our calculation of theNd breakup process we employ theNN t matrix in the momentum-helicity basis
up;p̂SL;tlpa [7], whereS, t, L are the total spin of the 2N system, the total isospin, and the helicity. The labelpa means that
the basis state has a definite parityhp and is antisymmetrized. The connection of theT-matrix elements

akpms2ms3t2t3uTsEpdupms1
0 ms8t1

0t8l to those in the momentum-helicity basis, namely,TLL8
pSt sp, p;Epd, is given in Ref.[7]. Here we

want to be more general by letting the nucleon typest2, t3, t1
0, t1 being arbitrary but employing Kronecker symbols to ensure

charge conservation,

akt2t3ms2ms3puTsEpdut1
0, − t1ms1

0 ms8pl =
1

4
dt2+t3,t1

0−t1
e−isL0fp−L08fpdo

Spt
f1 − hps− dS+tgCS1

2

1

2
t;t2t3DCS1

2

1

2
t;t1

0, − t1D
3 CS1

2

1

2
S;ms2ms3L0DCS1

2

1

2
S;ms1

0 ms8L08Do
LL8

dL0L
S supdd

L08L8
S supdTLL8

pSt sp, p;Epd.

s2.34d

In the above expressiondL8L
S sud is a rotation matrixf13g. Using Eq. s2.34d we obtainU0

s1dsp, qd in terms of theNN

T-matrix elementsTLL8
pSt sp, p;Epd in the momentum-helicity basis as

U0
s1dsp, qd =

s− d1/2+t1

4Î2
dt2+t3,t1

0−t1o
ms8

e−isL0fp−L08fpdCS1

2

1

2
1;ms8ms1Do

l
Csl11;Md − ms8 − ms1, ms8 + ms1dYl,Md−ms8−ms1

sp̂8dclsp8d

3 o
Spt

f1 − hps− dS+tgCS1

2

1

2
t;t2t3DCS1

2

1

2
t;t1

0, − t1DCS1

2

1

2
S;ms2ms3L0DCS1

2

1

2
S;ms1

0 ms8L08D
3 o

LL8

dL0L
S supdd

L08L8
S supdTLL8

pSt sp, p;Epd. s2.35d

Now let us concentrate on theNN T-matrix elements
TLL8

pSt sp, p8;Epd in the momentum-helicity basis. For the
calculation ofNN scattering it is convenient to choose the
z axis as the direction of the initial momentap8. It is
shown in Ref.f7g that in this case the azimuthal depen-
dencies of theT-matrix elements can be separated as

TLL8
pSt sp, p8ẑ;Epd = eiL8fTLL8

pSt sp, p8, cosu;Epd, s2.36d

which then allowed to reduce the LSE’s for
TLL8

pSt sp, p8ẑ;Epd to be the ones forTLL8
pSt sp, p8, cosu;Epd.

Thus, in order to calculateU0
s1dsp, qd we have to find a

relation betweenTLL8
pSt sp, p8;Epd with arbitrary p̂8 and

TLL8
pSt sp, p8, cosu9;Epd, whereu9 now depends onp̂ and p̂8.

This is done in the following way. First we rotate

TLL8
pSt sp, p8;Epd so thatp̂8 points in thez direction and then

apply the relation given in Eq.s2.36d. With Rsp̂8d being a
rotation operator working in momentum and spin space, it
follows according to Ref.f7g that

TLL8
pSt sp, p8;Epd = pakp;p̂SL;tuTsEpdup8;p̂8SL8;tlpa

=pakp;p̂SL;tuTsEpdRsp̂8dup8ẑ; ẑSL8;tlpa

=pakp;p̂SL;tuRsp̂8dTsEpdup8ẑ; ẑSL8;tlpa

=pakR†sp̂8dp;p̂SL;tuTsEpdup8ẑ; ẑSL8;tlpa

s2.37d

Here
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up;p̂SL;tlpa ; 1
2f1 − hps− dS+tgs1 + hpdutlup;p̂SLl,

s2.38d

and thus,

R†sp̂8dup;p̂SL;tlpa = 1
2f1 − hps− dS+tgs1 + hpdutlR†sp̂8d

3up;p̂SLl. s2.39d

The action ofR†sp̂8d on the stateup; p̂SLl leads to two
successive rotations as

R†sp̂8dup; p̂SLl = Rs0, −u8, − f8dRsfu0dupẑ; ẑSLl,

s2.40d

and the result isssee the Appendix for the derivationd
given by

R†sp̂8dup; p̂SLl = eiLVRsf9u 90dupẑ; ẑSLl = eiLVup9;p̂9SLl
s2.41d

with

cosu 9 = cosu cosu8 + sin u sin u8cossf − f8d,

s2.42d

sin u 9eif9 = − cosu sin u8 + sin u cosu8 cossf − f8d

+ i sin u sinsf − f8d, s2.43d

eiLV =
oN=−S

S
DNL8

S* sf8u80dDNL
S sfu0d

DL8L
S sf9u 90d

, s2.44d

whereDL8L
S sfu0d are the WignerD function f13g. Insert-

ing Eq. s2.41d and then Eq.s2.36d into Eq. s2.37d yields

TLL8
pSt sp, p8;Epd = e−iLVpakp9;p̂9SL;tuTsEpdup8ẑ; ẑSL8;tlpa

=eisL8f9−LVdTLL8
pSt sp, p8, cosu 9;Epd, s2.45d

where the exponential factoreisL8f9−LVd is calculated as

eisL8f9−LVd = eiL8f9
o

N=−S

S

DNL
S* sfu0dDNL8

S sf8u80d

DL8L
S* sf9u 90d

=

o
N=−S

S

eiNsf−f8ddNL
S suddNL8

S su8d

dL8L
S su 9d

. s2.46d

Returning to Eq.s2.35d, by means of the relation given in
Eq. s2.45d we arrive at our final expression forU0

s1dsp, qd,

U0
s1dsp, qd =

s− d1/2+t1

4Î2
dt2+t3,t1

0−t1

3o
ms8

e−isL0fp−L08fpdCS1

2

1

2
1;ms8ms1D

3 o
l

Csl11;Md − ms8 − ms1, ms8 + ms1d

3Yl,Md−ms8−ms1
sp̂8dclsp8d

3 o
Spt

s1 − hps− dS+tdCS1

2

1

2
t;t2t3D

3 CS1

2

1

2
t;t1

0, − t1DCS1

2

1

2
S;ms2ms3L0D

3 CS1

2

1

2
S;ms1

0 ms8L08Do
LL8

dL0L
S supdd

L08L8
S supd

3 eisL8f8−LVdTLL8
pSt sp, p, cosu8;Epd s2.47d

with

cosu8 = cosupcosup + sin upsin upcossfp − fpd
s2.48d

eisL8f8−LVd =
oN=−S

S
eiNsfp−fpddNL

S supddNL8
S supd

dL8L
S su8d

.

s2.49d

III. RELATIVISTIC KINEMATICS IN THE Nd
BREAKUP AMPLITUDE

In the preceding section the breakup operatorU0sp, qd is
derived within the framework of the nonrelativistic Faddeev
theory. Since our goal is to study breakup reactions at inter-
mediate energies, we want to consider the influence of rela-
tivistic kinematics. This means that we not only have to em-
ploy relativistic energy-momentum relations, but more
importantly have to reevaluate the Jacobi momenta, carry out
corresponding Lorentz transformations to the two- and three-
particle c.m. subsystems, and employ a relativistic descrip-
tion of the cross section. For our derivation we adopt the
formulation given in Ref.[14]. For clarity we will describe
the most important steps in detail.

A. Jacobi momenta

Let a system be described by the energy and momentum
vectorsE, kd in one frame. Then, in a different frame moving
with relative velocityu, the system is described bysE8, k8d,
connected by a Lorentz transformationLsud to the first
frame,

sE8, k8d ; LsudsE, kd, s3.1d

k8 = k + sg − 1dsk · ûdû − gEu, s3.2d
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E8 = gsE − k ·ud, s3.3d

g ;
1

Î1 − u2
. s3.4d

Using these relations we can bring our 3N system from the
laboratory frame to the c.m. frame and find the corre-
sponding Jacobi momentap andq in the final state andq0
in the initial state.

As in the preceding section we choose without loss of
generality the two-nucleon subsystem to consist of nucleons
2 and 3, and let nucleon 1 be the spectator. To derive the
relative momentump of the subsystem in its c.m. frame, we
employ the Lorentz transformation

u =
k23

E23
, s3.5d

sE28, pd ; sE28, k28d = LsudsE2, k2d, s3.6d

sE28, − pd ; sE38, k38d = LsudsE3, k3d. s3.7d

Let us define the following quantities for the 23-
subsystem:

k23 ; k2 + k3, s3.8d

E23 ; E2 + E3, s3.9d

which are connected by a Lorentz invariant relation as

E23
2 − k23

2 ; M23
2 ù 4m2. s3.10d

HereM23 is called the invariant mass of the 23-subsystem
and equals the total energy of the 23-subsystem in its c.m.
frame. According to Eq.s3.2d and the transformations
given in Eqs.s3.5d–s3.7d, the Jacobi momentump is given
as f15g

p =
1

2
sk2 − k3d −

1

2
k23S E2 − E3

E23 + M23
D . s3.11d

The last term in Eq.s3.11d exhibits the relativistic effect
in the definition of the relative momentum. Since in the
c.m. frame the energyE28 is equal toE38, the total energy
M23 in the 23-frame is given as

M23 = E28 + E38 = 2E28 = 2Îm2 + k28
2 = 2Îm2 + p2.

s3.12d

Starting with Eq.(3.12), employing energy and momen-
tum conservation together with Eqs.(3.8)–(3.10) the magni-
tude ofp is calculated as

p = 1
2

3Îmd
2 − 2m2 + 2mdsElab − E1d − 2ElabE1 + 2klabk1cosulab.

s3.13d

Knowing the total energyM23 in the 23-frame one can

calculate the kinetic energyEp in the 23-subsystem, that
is,

Ep = M23 − 2m= 2Îm2 + p2 − 2m. s3.14d

Thus theNN T-matrix elementsTLL8
pSt sp, p, cosu8;Epd in

Eq. s2.47d will be calculated for the energyEp given in
Eq. s3.14d.

In order to obtain the Jacobi momentumq we apply the
following Lorentz transformation

u =
k lab

E0
, s3.15d

sE18, qd ; sE18, k18d = LsudsE1, k1d, s3.16d

sE238 , − qd ; sE238 , k238 d = LsudsE23, k23d, s3.17d

whereE0 is the total energy in the laboratory frame,

E0 ; md + Elab = E1 + E23. s3.18d

Similar to p, the Jacobi momentumq acquires a relativis-
tic correction term and is given by

q =
1

2
sk1 − k23d +

k lab

2M0
S sk1 − k23d ·k lab

E0 + M0
− sE1 − E23dD .

s3.19d

Here M0 is c.m. total energy or the invariant mass of the
3N system

M0 ; E18 + E238 , s3.20d

which is connected to the laboratory total energyE0 and
the laboratory total momentumk lab by the following Lor-
entz invariant relation

E0
2 − k lab

2 = M0
2 ù 9m2. s3.21d

The energiesE18 and E238 are given in terms of the magni-
tudes of Jacobi momentap and q as

E18 = Îm2 + k18
2 = Îm2 + q2 s3.22d

E238 = ÎM23
2 + k238

2 = Î4sm2 + p2d + q2. s3.23d

With Eqs. s3.16d–s3.18d, s3.20d, s3.22d, and s3.23d we get
for the scalar product in Eq.s3.19d,

sk1 − k23d ·k lab = k1
2 − k23

2

= E1
2 − E23

2 − m2 + M23
2

= sE1 − E23dE0 − sE18
2 − E238

2d

= sE1 − E23dE0 − sE18 − E238 dM0.

s3.24d

Inserting this result into Eq.s3.19d leads to a final expres-
sion for q,
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q =
1

2
sk1 − k23d

+
k lab

2M0
S sE1 − E23dE0 − sE18 − E238 dM0

E0 + M0
− sE1 − E23dD

=
1

2
sk1 − k23d −

1

2
k labSE1 − E23 + E18 − E238

E0 + M0
D

= k1 − k labS E1 + E18

E0 + M0
D . s3.25d

For the last equality total momentum conservation was
employed. With the help of Eqs.s3.22d and s3.23d we can
write M0 as

M0 = E18 + E238 = Îm2 + q2 + Î4sm2 + p2d + q2. s3.26d

Starting from Eq.s3.26d we obtain after some algebra the
magnitude ofq as

q =
1

2M0

ÎhM0
2 − s5m2 + 4p2dj2 − 16m2sm2 + p2d,

s3.27d

where the value ofM0 can be calculated from Eq.s3.21d
as

M0 = ÎE0
2 − klab

2 = Îm2 + md
2 + 2mdElab. s3.28d

Finally we turn to the initial state, calculate the Jacobi
momentumq0, the energiesElab8 of the incoming nucleon,
and Ed8 of the deuteron in the c.m. frame. Replacing in Eq.
(3.19) the quantitiesk1 with k lab, E1 with Elab, k23 with zero,
andE23 with md, the Jacobi momentumq0 is given as

q0 =
1

2
k lab +

k lab

2M0
S klab

2

E0 + M0
− sElab − mddD

=
1

2
k lab +

k lab

2M0
fE0 − M0 − sElab − mddg

=
md

M0
k lab. s3.29d

The energiesElab8 and Ed8 are obtained using Eq.s3.3d as

Elab8 =
E0

M0
SElab −

klab
2

E0
D =

1

M0
sm2 + mdElabd, s3.30d

Ed8 =
E0

M0
md =

1

M0
sElab + mddmd. s3.31d

It can be shown thatElab8 andEd8 sum up toM0 as required
by total energy conservation in the c.m. frame.

B. S matrix

For a correct treatment of relativistic kinematics, we still
need to connect theS-matrix element in the laboratory frame
to theNd breakup amplitude. Suppressing all discrete quan-
tum numbers we define theS-matrix element for the breakup

process in the laboratory frame as

Ssk1, k2, k3d ; kk1k2k3uSuk labkdl s3.32d

and in the c.m. frame as

Ssp, qd ; kpquSuq0l ; kpquSuq0l. s3.33d

In the above equation we omitted the deuteron stateuCdl
in the initial state, but showed its momentumkd in Eq.
s3.32d, though its value is zero. The momentap, q, andq0
are the Jacobi momenta calculated in Eqs.s3.11d, s3.25d,
and s3.29d. The statesuk1k2k3l and uk labkdl are related to
the statesupql and uq0l by the following relations:

uk1k2k3l ; uk1luk2k3l

= J−1/2sk2, k3duk1lupk23l

; J−1/2sk2, k3dJ−1/2sk1, k23dupqluk1 + k23l,

s3.34d

uk labkdl ; J−1/2sk lab, kdduq0luk labl. s3.35d

The JacobianJsk2, k3d of the transformation from the vari-
ablessk2, k3d to sp, k23d is given byf14g

Jsk2, k3d = U ] sk2, k3d
] sp, k23d

U =
E2E3

E23

M23

E28E38
=

4E2E3

E23M23
,

s3.36d

where the last equality results by means of Eq.s3.12d for
M23. Similarly, the JacobiansJsk1, k23d in Eq. s3.34d and
Jsk lab, kdd in Eq. s3.35d are given as

Jsk1, k23d = U ] sk1, k23d
] sq, k1 + k23d

U =
E1E23

E0

M0

E18E238
, s3.37d

Jsk lab, kdd = U ] sk lab, kdd
] sq0, k labdU =

Elabmd

E0

M0

Elab8 Ed8
. s3.38d

Thus, one can finally relateSsk1, k2, k3d to Ssp, qd as

Ssk1, k2, k3d = kk1k2k3uSuk labkdl

= J−1/2sk2, k3dJ−1/2sk1, k23dJ−1/2sk lab, kdd

3kk1 + k23ukpquSuq0luk labl

= dsk1 + k23 − k labd

3hJsk2, k3dJsk1, k23dJsk lab, kddj−1/2Ssp, qd,

s3.39d

where thed function ensures total momentum conserva-
tion.

As last step we need to connectSsk1, k2, k3d to the
breakup amplitudeU0sp, qd defined in Eq.(2.12), and which
is related toSsp, qd as

Ssp, qd = − 2pidsE18 + E238 − Elab8 − Ed8dU0sp, qd.

s3.40d

Inserting Eq.s3.40d into Eq. s3.39d this gives
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Ssk1, k2, k3d = − 2pidsk1 + k23 − k labddsE18 + E238 − Elab8 − Ed8d

3 hJsk2, k3dJsk1, k23dJsk lab, kddj−1/2U0sp, qd.

s3.41d

By means of the identity

dsk1 + k23 − k labddsE18 + E238 − Elab8 − Ed8d

= dsk1 + k23 − k labddsE1 + E23 − Elab − mdd

3
E18 + E238 + Elab8 + Ed8

E1 + E23 + Elab + md
, s3.42d

we obtain the relation betweenSsk1, k2, k3d and U0sp, qd
as

Ssk1, k2, k3d = − 2pidsk1 + k23 − k labddsE1 + E23 − Elab − mdd

3
E18 + E238 + Elab8 + Ed8

E1 + E23 + Elab + md

3 hJsk2, k3dJsk1, k23dJsk lab, kddj−1/2U0sp, qd

= − 2pidsk1 + k23 − k labddsE1 + E23 − Elab − mdd

3 Gsp, qdU0sp, qd. s3.43d

Here the functionGsp, qd is defined as

Gsp, qd ;
E18 + E238 + Elab8 + Ed8

E1 + E23 + Elab + md

3 hJsk2, k3dJsk1, k23dJsk lab, kddj−1/2

=ÎM23E18E238 Elab8 Ed8

4E1E2E3Elabmd
. s3.44d

In the nonrelativistic limit the functionGsp, qd equals 1.

IV. OBSERVABLES IN THE PROTON-NEUTRON CHARGE
EXCHANGE REACTION

So far we derived the breakup amplitudeU0sp, qd in first
order in its most general form. As application of a proton-
deuteron breakup process we consider thesp, nd charge ex-
change reaction. In the experiments we are going to analyze
only the scattered neutron is detected. Thus, when calculat-
ing the observables of this reaction, all possible directions of
the two undetected protons must be taken into account. This
is accomplished numerically by integrating over the relative
directionp̂ between the two protons. In our numerical appli-
cation, we consider the spin averaged differential cross sec-
tion in thedsp, ndpp reaction and selected spin observables.
These are the neutron polarizationP0 in the dsp, nWdpp reac-
tion, the analyzing powerAy in the dspW, ndpp reaction, and
the polarization transfer coefficientsDij in the dspW, nWdpp re-
action. Comprehensive descriptions and derivations of these
observables can be found in, e.g., Ref.[2].

The nonrelativistic cross section is given as

d5s

dE1dk̂1

= s2pd4m3pk1

2klab

1

6 o
ms1ms2ms3

ms1
0 Md

E dp̂uU0sp, qdu2,

s4.1d

wherek1 determinesq via Eq. s2.8d and p via Eqs.s2.26d
and s2.8d. The relativistic cross section is given by

ds = s2pd4Elab

klab
dsk1 + k23 − k labddsE1 + E23 − Elab − mdd

3 G2sp, qduU0sp, qdu2dk1dk2dk3, s4.2d

where theS-matrix element from Eq.s3.43d is used, and
all energies obey the relativistic energy-momentum rela-
tion. The cross section for the inclusiveNd breakup pro-

cess is calculated as function of the directionk̂1 and the
kinetic energyEk,1=E1−m of the detected nucleon. Using
the relation

dk1 = dk1k1
2dk̂1 = E1k1dE1dk̂1 = E1k1dEk,1dk̂1 s4.3d

leads to

ds

dE1dk̂1

= s2pd4ElabE1k1

klab
E dk2dk3dsk1 + k23 − k labd

3 dsE1 + E23 − Elab − mddG2sp, qduU0sp, qdu2

= s2pd4ElabE1k1

klab
E dk23dpJsk2, k3d

3 dsk1 + k23 − k labd

3 dsE1 + E23 − Elab − mddG2sp, qduU0sp, qdu2

= s2pd4ElabE1k1

klab
E dp̂dpp2 4E2E3

E23M23

3 dsE1 + E23 − Elab − mddG2sp, qduU0sp, qdu2

= s2pd4ElabE1k1p

klabM23
E dp̂E2E3G2sp, qduU0sp, qdu2.

s4.4d

In addition we used Eq.s3.36d for Jsk2, k3d together with

dE23 = dÎM23
2 + k23

2 = dÎ4sm2 + p2d + k23
2 =

4p

E23
dp.

s4.5d

Defining a functionrsp, qd by

rsp, qd ;
2ElabE1E2E3

M23
G2sp, qd =

E18E238 Elab8 Ed8

2md
, s4.6d

allows to write the relativistic cross section similar to the
nonrelativistic one, that is
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ds

dE1dk̂1

= s2pd4rsp, qdpk1

2klab

1

6 o
ms1ms2ms3

ms1
0 Md

E dp̂uU0sp, qdu2.

s4.7d

Here we restore the summation over final spins and the
averaging over initial spins states. In the nonrelativistic
case, the functionrsp, qd reduces tom3, leading to Eq.
s4.1d. Next we give the polarizationP0, the analyzing
power Ay and polarization transfer coefficientsDij

;1/6I0TrhU0ss ·ĵ dU0
†ss ·îdj as

P0 =
1

6I0
TrhU0U0

†ss · n̂dj, s4.8d

Ay =
1

6I0
TrhU0ss · n̂dU0

†j, s4.9d

Dn8n =
1

6I0
TrhU0ss · n̂dU0

†ss · n̂8dj, s4.10d

Ds8s =
1

6I0
TrhU0ss · ŝdU0

†ss · ŝ8dj, s4.11d

Dl8s =
1

6I0
TrhU0ss · ŝdU0

†ss · l̂8dj, s4.12d

Ds8l =
1

6I0
TrhU0ss · l̂dU0

†ss · ŝ8dj, s4.13d

Dl8l =
1

6I0
TrhU0ss · l̂dU0

†ss · l̂8dj, s4.14d

where

I0 ;
1

6
TrhU0U0

†j. s4.15d

For simplicity we suppressed thep̂-integration in Eqs.

s4.8d–s4.15d. The unit vectorsn̂, l̂, ŝ, n̂8, l̂8, and ŝ8 are
defined as

n̂ = n̂8 ;
k lab 3 k1

uk lab 3 k1u
, l̂ ; k̂ lab, ŝ; n̂ 3 l̂ ,

l̂8 ; k̂1 , ŝ8 ; n̂8 3 l̂8. s4.16d

For the explicit calculation of theNd breakup amplitude
U0sp, qd, Eq. (2.47), we need theNN T-matrix elements.
They are obtained by solving the LS equations for a given
NN potential in 3D as described in Ref.[7] at fixed momenta,
angles, and energies. The matrix elements
TLL8

pSt sp, p, cosu8;Epd are then obtained by interpolating inp,
cosu8, andEp. This is more economic than solving the LS
equation every time for the corresponding energies and ini-
tial momenta. Similarly the partial wave deuteron wave func-

tion components are calculated once and interpolated to the
momentap8. For all the interpolations we use the modified
cubic Hermite splines of Ref.[16]. Typical grid sizes are 80
points for cosu8 and 50 points forp. In case ofEp (and p)
and in the context of the three-body amplitude we need the
NN t matrix TLL8

pSt as a function ofEp for given three-nucleon
energies from 0 to 2/3 of the nucleon laboratory energy. We
calculateTLL8

pSt at 40 energy pointsEp, according to the larg-
est energy we consider. Of course, if we calculate at a
smaller nucleon laboratory energy, we do not need all 40
energy points. The angular variation ofTLL8

pSt is stronger at the
higher energies, thus one needs a bigger angular grid at the
higher energies. For simplicity we take the same number of
angular points for all energies.

V. RESULTS AND DISCUSSION

Our numerical calculations are based on two differentNN
potentials, the Bonn-B[17] and AV18[18] potentials. In the
discussion of our results we consider three different aspects.
First, since we present a new way of calculating the breakup
process, namely without partial wave decomposition, we
need to compare our results to those obtained in traditional
partial wave based calculations. After having established the
feasibility and correctness of our calculations, we will ad-
dress two physical questions, namely the importance of res-
cattering contributions in thesp, nd charge exchange reaction
at a moderately high energy and the effect of different de-
scriptions of the kinematics, i.e., we compare the relativistic
treatment introduced in Sec. III to the nonrelativistic descrip-
tion.

A. Comparison with partial-wave calculations

In this section we compare our 3D calculations with tra-
ditional PW calculations at different energies. The aim here
is twofold. First, we want to convince ourselves that our
newly developed 3D formulations agree with well estab-
lished PW calculations[19]. Second, we want to find out
from which energy regime on our 3D method surpasses the
state-of-the-art PW calculations. As already mentioned in the
Introduction, in PW calculations the number of partial waves
necessary for a converged result proliferated as the energies
increases, leading to limitations with respect to computa-
tional feasibility and accuracy. Our new 3D scheme does not
suffer from these limitations. While it is increasingly difficult
to exhaust quantitatively the angular variation of theNN t
matrix by using angular momentum states, there is no prob-
lem to represent it by a suitable grid of angles, as we have
shown in Ref.[7].

Our first comparison is carried out at a proton incident
energy ofElab=100 MeV and a neutron laboratory scattering
angle ulab=13°. The calculations, which are based on the
Bonn-B potential are given in Fig. 1, which shows the dif-
ferential cross section, the analyzing powerAy, and the po-
larization transfer coefficientDsl. The solid lines represent
our 3D calculations, the dashed lines the corresponding PW
calculations[19]. Here we use the notationj for the highest
2N total angular momentum taken into account in the PW
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calculation, andJ for the highest 3N total angular momen-
tum. The figure shows that both lines are almost indistin-
guishable, thus validating our new scheme. At this point we
also would like to mention that the channels used in the PW
calculation, namelyj=7 andJ=31/2, constitute today’s limits
for a PW calculation. In addition, we carried out compari-
sons at lower energies, e.g., at 16 MeV, where a PW calcu-
lation with j=5 andJ=31/2 is in perfect agreement with our
3D calculations.

Next, we turn to a slightly higher projectile energy,Elab
=197 MeV, and carry out the same comparison. The results
for the differential cross section, the analyzing powerAy, and
the polarization transfer coefficientDsl are shown in Fig. 2,
where the solid line represents our 3D calculation. The PW
calculations are shown with increasing number of partial
waves from j=5, J=25/2 to j=7, J=31/2. The peak of the

differential cross section reveals that each additional angular
momentum of the PW calculation results in an additive con-
tribution, but even the highest possible number deviates
about 9% from our 3D result. This is the most extreme case,
for the analyzing powerAy and the polarization transfer co-
efficient Dsl the PW calculation withj=7 andJ=31/2 agrees
reasonable well with our 3D result. It is interesting to note
that forDsl the 2N total momentumj is much more important
to reach convergence than the total 3N momentumJ.

At this point it is appropriate to make some general re-
marks. In this work we restrict our 3D approach to the lead-
ing term in the Faddeev multiple scattering series. Thus we
have no insight whether the fully summed series would lead
to a better agreement of 3D and PW approach. We also re-
strict ourselves to semiexclusive processes, and cannot draw
any conclusions on 3D and PW calculations with respect to
elastic scattering observables or full breakup observables.

FIG. 1. (Color online) The spin averaged differential cross sec-
tion d2s/dEndu fmb/sMeV srdg, the analyzing powerAy, and the po-
larization transfer coefficientDsl for the sp, nd charge exchange pro-
cess at projectile energyElab=100 MeV and neutron laboratory
scattering angleulab=13°. The solid line represents the 3D calcula-
tion, the dashed line the PW calculation withj=7, J=31/2. Both
calculations are based on the Bonn-B potential[17].

FIG. 2. (Color online) Same as Fig. 1, but for projectile energy
Elab=197 MeV. The solid line represents the 3D calculation, the
dashed and dotted lines represent PW calculations with different 2N
total angular momentumj and total 3N angular momentumJ as
indicated in the figure. All calculations are based on the Bonn-B
potential.
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B. Contributions from the rescattering terms

One of the arguments to study the semiexclusiveNd
breakup process in first order in theNN T matrix is that at
higher energies the rescattering term generated by the solu-
tion of the full Faddeev equations become less important.
For a comprehensive study of the importance of those res-
cattering terms it would be necessary to compare first order
calculations with full Faddeev calculations over a wide range
of projectile energies and for many different experimental
situations. Unfortunately we cannot do this at the present
stage, since three-dimensional full Faddeev calculations do
not yet exist, and traditional, partial wave based Faddeev
calculations are limited in their energy range. Thus we take
as compromise a medium energy of about 200 MeV, and
compare thesp, nd charge exchange observables calculated in
our first order 3D approach with the ones obtained from a
full, partial wave based Faddeev calculation. We choose the
proton energyElab=197 MeV, since there exist recent mea-
surements[8].

Our calculations are based on two differentNN potential
models, namely Bonn-B[17] and AV18[18]. Both potentials
are defined below 350 MeV nucleon laboratory energy,
which corresponds to aNN c.m. energy of 175 MeV. In the
Nd breakup process in first order theNN c.m. energy avail-
able to the two-nucleon subsystem is fixed in terms of the
laboratory momentum of the final nucleon and the projectile
energy. For a projectile energy of about 200 MeV in thepd
scattering process, the maximumNN c.m. energy in the two-
body subsystem is about 133 MeV. Thus, our calculations
employ theNN models in an energy regime where they are
perfectly well defined. Of course, the two potential models
exhibit differences in the description of theNN phase shifts.
The model AV18 is one of the so-called high-precision po-
tentials, describing theNN data base with ax2/datum<1,
whereas Bonn-B has a slightly higherx2/datum value. Thus,
there are on-shell differences between those two models,
which should lead to differences in theNd breakup observ-
ables.

In Figs. 3 and 4 we compare the 3D calculations with PW
based full Faddeev calculations[19] at 197 MeV proton en-
ergy. We show the spin averaged differential cross section,
the analyzing power and spin transfer coefficients at two
angles,ulab=24° andulab=37° together with experimental re-
sults from Ref.[8]. The PW full Faddeev calculations usej
=5,J=31/2 for the AV18NN potential, andj=4,J=31/2 for
the Bonn-BNN potential. Since the solution of the PW full
Faddeev equations is more involved we restrict ourselves to
a lower number of partial waves. However, the number of
partial waves is sufficient to study the importance of rescat-
tering terms in the multiple scattering series at this energy.
The first obvious difference between the two calculations is
the appearance of the final state peak in the differential cross
section, which of course is solely due to rescattering. Fur-
thermore, we see that rescattering contributions have the
general tendency to push the peak of the differential cross
section down, though the size of the effect depends on the
angle and the potential. However, the rescattering terms do
not affect the position of the peak. We see that the peak is
shifted further away from the data the larger the neutron

scattering angle becomes. For both angles, the analyzing
power Ay shows the largest effect of rescattering for small
neutron energies, which can be expected, since interactions
between outgoing particles should be larger, when their rela-
tive energy is smaller. In both cases,Ay can only be satisfac-
torily described when rescattering terms are taken into ac-
count. For the spin transfer coefficientDll at ulab=24° the
situation is similar, rescattering effects are largest for small
neutron energies. ForDssat ulab=37° none of the calculations
is able to capture the general shape of the data, rescattering
effects are visible, but they do not affect the general shape of
the curve as this is the case in the other observables shown in
Figs. 3 and 4. From these consideration we have to conclude
that at a projectile energyElab.200 MeV rescattering terms
still give considerable contributions to the fullpd breakup

FIG. 3. (Color online) The spin averaged differential cross sec-
tion d2s/dEndu fmb/sMeV srdg, the analyzing powerAy, and the po-
larization transfer coefficientDll for the sp, nd charge exchange pro-
cess at projectile energyElab=197 MeV and neutron laboratory
scattering angleulab=24°. The solid(short dashed) line represents
the 3D calculations for the first order term based on the AV18
(Bonn-B) potential. The long-dashed(dotted) line stands for the
partial wave based, full Faddeev calculations based on the AV18
(Bonn-B) potential. The data are taken from Ref.[17].
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amplitude and hence cannot be neglected. Due to the lack of
calculations based on the full Faddeev equations at higher
energies, we cannot carry out corresponding studies at higher
energies.

C. Relativistic effects

In this section we study the effects of relativistic kinemat-
ics in the breakup amplitude and follow the formulation de-
rived in Sec. III. We also want to take full advantage of our
3D formulation and carry out calculations at proton incident
energies higher than 200 MeV, a regime where partial wave
based Faddeev calculations become less competitive. Of
course we also realize that theNN potentials from which our
NN T matrix is obtained are strictly speaking out of their
range of validity, i.e., they do not include important delta
degrees of freedom. ANN laboratory energy of 350 MeV
roughly corresponds to a proton incident laboratory energy
of 260 MeV in thepd scattering process. A comparison of
theNN scattering observables with the calculated ones shows

that even atNN laboratory energies higher than 350 MeV the
agreement with data deteriorates relatively slowly. Neverthe-
less, this can lead to deficiencies in describing theNd
breakup process atElab.260 MeV.

At first we investigate the effect of relativistic kinematics
on the breakup observables at a low energy,Elab=100 MeV,
where it is expected to be small. In Fig. 5 we show the
differential cross section andAy at Elab=100 MeV and a neu-
tron laboratory scattering angleulab=24°. In the cross section
effects are only visible in the quasi-free-scattering(QFS)
peak, but in general one can say that around 100 MeV rela-
tivistic effects are small, and certainly not the dominant cor-
rection to worry about.

Going to a higher energy,Elab=197 MeV, the relativistic
effects increase considerably. In Figs. 6 and 7 we show the
cross section andAy and two spin transfer coefficients at
neutron laboratory scattering anglesulab=24° andulab=37°.
Here the QFS peak is visibly enhanced by the use of relativ-
istic kinematics. More importantly, its location is shifted to-
wards smaller neutron energies, and is now in better agree-
ment with the experimentally determined peak location. As
far as the spin observables are concerned, the relativistic cor-
rections show the largest effect for the higher neutron ener-
gies.

A proton energy ofElab=346 MeV is the next higher en-
ergy at which thesp, nd charge exchange reaction is mea-
sured[9]. In Fig. 8 we display 3D calculations with nonrel-

FIG. 4. (Color online) The same as in Fig. 3, but for the spin
averaged differential cross sectiond2s/dEndu fmb/sMeV srdg, the
analyzing powerAy and the polarization transfer coefficientDss at
ulab=37°.

FIG. 5. (Color online) The spin averaged differential cross sec-
tion d2s/dEndu fmb/sMeV srdg and the analyzing powerAy for the
sp, nd charge exchange process at projectile energyElab=100 MeV
and neutron laboratory scattering angleulab=24° The solid(short
dashed) line gives the nonrelativistic 3D calculations for the first
order term based on the AV18(Bonn-B) potential. The long-dashed
(dotted) line represents the 3D calculations that include the effects
of relativistic kinematics.
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ativistic and relativistic kinematics for a neutron scattering
angle ulab=22°. Again we observe an increase in the QFS
peak and a shift to lower neutron energies. Here we would
like to point out that there is an uncertainty in the data as far
as the location of the QFS peak is concerned. In the experi-
ment there is an uncertainty of the energy, at which thepd
breakup process exactly occurs. For example, due to the
thickness of the target the proton may have lost some of its
energy before it hits and breaks the deuteron apart[19]. In
this case, the breakup process occurs at an energy slightly
different from the calculated one. The effect of relativistic
kinematics on the spin observables is clearly more pro-
nounced compared toElab=197 MeV. We also calculate the
breakup process atElab=495 MeV, though here the uncer-
tainty with respect to our inputNN interactions is largest. In

Fig. 9 we show the differential cross section,Ay and Dll at
Elab=495 MeV for a neutron laboratory scattering angle
ulab=18° together with the measurements from Ref.[20].
Here we clearly see that the corrections due to relativistic
kinematics push the QFS peak towards lower neutron ener-
gies, and the location of our calculated peak agrees with the
measured one. The effects on the spin observables are now
also quite sizable.

With this study we can qualitatively indicate that relativ-
istic effects become important when going to higher ener-
gies. However, we cannot make any definite statements,
since we only consider relativistic kinematics. We have not
considered effects resulting from boosting theNN T matrix
[10] and Wigner rotations of the spin[11]. Those effects in
principle could counterbalance the kinematic effects. It also
remains to be seen how important rescattering effects will be
at those higher energies. Our calculations based on the first
order term and relativistic kinematics overestimate the differ-
ential cross section. That could imply that rescattering still
plays an important role at those energies.

FIG. 6. (Color online) The spin averaged differential cross sec-
tion d2s/dEndu fmb/sMeV srdg, the analyzing powerAy, and the po-
larization transfer coefficientDll for the sp, nd charge exchange pro-
cess at projectile energyElab=197 MeV and neutron laboratory
scattering angleulab=24°. The solid(short dashed) line gives the
nonrelativistic 3D calculations for the first order term based on the
AV18 (Bonn-B) potential. The long-dashed(dotted) line represents
the 3D calculations that include the effects of relativistic kinemat-
ics. The data are taken from Ref.[17].

FIG. 7. (Color online) The same as in Fig. 6, but for the spin
averaged differential cross sectiond2s/dEndu fmb/sMeV srdg, the
analyzing powerAy, and the polarization transfer coefficientDss at
ulab=37°.
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VI. SUMMARY AND CONCLUSIONS

We formulate and calculate theNd breakup process based
on the Faddeev scheme in first order in the multiple scatter-
ing expansion in a three-dimensional fashion which does not
rely on any partial wave decomposition. The leading term for
the Nd breakup amplitude is derived in a representation that
uses directly the momentum vectors. This representation can
be connected to the momentum-helicity basis, in which we
solve for theNN T matrix in a 3D fashion. Special care has
to be taken when rotating theNN T matrix elements, which
occur with arbitrarily oriented initial momenta in theNd
breakup amplitude, such that theNN initial relative momenta
point into a fixed z direction. This is needed since two
nucleon LS equation for theNN T-matrix is solved in a basis

where the arbitraryz axis points into the direction of the
initial momenta. This leads to an intricate additional phase
factor.

As specific application of our new formulation we calcu-
late the sp, nd charge exchange reaction in the proton-
deuteron breakup process. Here only the outgoing neutron is
detected after the breakup. Our calculations concentrate on
spin averaged differential cross sections, neutron polariza-
tions, proton analyzing powers, and polarization transfer co-
efficients at different energies.

First we carry out calculations of observables for the lead-
ing order term in theNN T matrix at energies which are
accessible to traditional, partial wave based Faddeev calcu-
lations. The aim here is twofold. First, we need to establish
the numerical accuracy and feasibility of our new formula-

FIG. 8. (Color online) The spin averaged differential cross sec-
tion d2s/dEndu fmb/sMeV srdg, the analyzing powerAy, and the po-
larization transfer coefficientDsl for the sp, nd charge exchange pro-
cess at projectile energyElab=346 MeV and neutron laboratory
scattering angleulab=22°. The solid(short dashed) line gives the
nonrelativistic 3D calculations for the first order term based on the
AV18 (Bonn-B) potential. The long-dashed(dotted) line represents
the 3D calculations that include the effects of relativistic kinemat-
ics. The data are taken from Ref.[9].

FIG. 9. (Color online) The spin averaged differential cross sec-
tion d2s/dEndu fmb/sMeV srdg, the analyzing powerAy, and the po-
larization transfer coefficientDll for the sp, nd charge exchange pro-
cess at projectile energyElab=495 MeV and neutron laboratory
scattering angleulab=18°. The solid(short dashed) line give the
nonrelativistic 3D calculations for the first order term based on the
AV18 (Bonn-B) potential. The long-dashed(dotted) lines represent
the 3D calculations that include the effects of relativistic kinemat-
ics. The data are taken from Ref.[20].
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tion. We establish both by comparing observables calculated
in both schemes at a proton incident energyElab=100 MeV,
where we find excellent agreement between both calcula-
tions. At Elab=200 MeV we find some slight deviations be-
tween the two schemes, especially in the quasifree peak of
the differential cross section. This can be identified as the
onset of a lack of convergence using the typical and feasible
number of partial waves in the traditional partial wave based
calculation in that particular observable. Since, however, res-
cattering still plays a role at 200 MeV, and is not yet in-
cluded in our 3D approach, we cannot make a definite state-
ment about the number of partial waves needed for a
sufficiently well converged partial wave solution.

Second, we want to investigate the importance of rescat-
tering terms at a moderately high energy. Of course, we need
full Faddeev calculations here. Since those do not yet exist in
a 3D formulation using realisticNN potentials, we have to
resort to partial wave based full Faddeev calculations. This
of course limits the energy regime we can study. Thus, we
compare our calculations atElab=197 MeV to the PW full
Faddeev calculations. We find that at this energy rescattering
effects are still important, and are mostly visible in the cross
section and the analyzing power. In addition, we find that the
PW full Faddeev calculations provide a reasonable descrip-
tion of the sp, nd charge exchange reaction at 200 MeV.
However, we also can detect one obvious deficiency in both
schemes, at larger neutron laboratory scattering angles the
QFS peak is located at slightly too high neutron energies
compared to the data.

This leads to the next topic we investigate, namely the
effect of relativistic kinematics in theNd breakup reaction.
Here we have to employ not only relativistic energy-
momentum relations, but also need to reevaluate the Jacobi
momenta by carrying out corresponding Lorentz transforma-
tions to the two- and three-particle c.m. subsystems, and em-
ploy a relativistic description of the cross section. We com-
pare our 3D calculation based on nonrelativistic kinematics
with the corresponding one based on relativistic kinematics.
Though there are no sizable effects at 100 MeV proton inci-
dent energy, we find, that at 200 MeV visible effect occurs,
mainly the differential cross section. Its magnitude increases,
but most importantly, the QFS peak is shifted to the experi-
mentally determined one using relativistic kinematics. Since
our calculations are as easily carried out at 300 or 500 MeV
as at 200 MeV, we perform calculations atElab=346 MeV
and 497 MeV, where experimental data are available. We
find that at those higher energies the effects due to the rela-
tivistic kinematics are considerably larger than at 200 MeV.
They are now visible not only in the cross section but also in
the spin observables. Even atElab=500 MeV this specific
feature prevails, namely that the QFS peak is shifted to lower
neutron energies and coincides now with the experimentally
determined one. However, its magnitude is larger. With these
finding we can qualitatively indicate that relativistic effects
become increasingly important when considering theNd
breakup reaction at higher energies. However, we have to
exercise some caution in the interpretation of our findings,
since we have not considered dynamical relativistic effects,

such as boosting of theNN T matrix. It also remains to be
seen how important rescattering effects will be in the higher
energy regime.

Summarizing, for the first order term in the multiple scat-
tering series in the Faddeev scheme the 3D approach has
proven to be a viable alternative to the established partial
wave based calculations. When entering the intermediate en-
ergy regime it may be the approach having the most promise
of being successful in the near future, due to the intrinsic
limitations with respect to computational feasibility and ac-
curacy faced by partial wave calculations at higher energies.
It is also clear that the 3D approach, though having a well
defined roadmap ahead, is still facing extensive development
needs. The full Faddeev equations will have to be solved,
with the inclusion of three-nucleon forces, which may play a
more dominant role at higher energies. Furthermore, though
we consider the effects of relativistic kinematics, we have
not taken into account the corresponding dynamical effects.
And last, but not least, the underlying input of any 3N cal-
culation, namely the two-nucleon force, is by far less devel-
oped at higher energies than it is for energies below the pion
production threshold.
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APPENDIX: TWO SUCCESSIVE ROTATIONS
In this appendix we evaluate the rotation of the state

up;p̂SLl as

R†sp8̂dup; p̂SLl = Rs0, −u8, − f8dRsfu0dupẑ; ẑSLl.

sA1d

First, we give a few basic definitions and relations re-
quired to follow the calculation. More details about rota-
tion can be found in, e.g., Ref.f13g.

A general rotation operatorRsp̂d is defined as

Rsp̂d = Rsfu0d = e−iJzfe−iJyu, sA2d

where Jz, Jy are thez and y components of the angular
momentum operatorJ and su, fd the rotation angles that
determine the direction ofp. This operator rotates the an-
gular momentum stateuẑjml into the stateup̂ jml,

up̂ jml = Rsp̂duẑjml = o
m8

Dm8m
j sp̂duẑjm8l, sA3d

whereDm8m
j sp̂d are the WignerD function defined as
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Dm8m
j sp̂d = Dm8m

j sfu0d ; kẑjm8uRsp̂duẑjml. sA4d

A rotation Rsabgd corresponds to a change of the Carte-
sian coordinatesr describing the state. The new Cartesian

coordinatesr 8 are related to the old onesr as

r 8 = Msabgdr , sA5d

where the rotation matrixMsabgd is given as

Msa b gd = 1 cosa cosb cosg − sin a sin g sin a cosb cosg + cosa sin g − sin b cosg

− cosa cosb sin g − sin a cosg − sin a cosb sin g + cosa cosg sin b sin g

cosa sin b sin a sin b cosb
2 . sA6d

Two successive rotations in momentum space

We denote the rotation operator in momentum space as
RLsp̂d, which is given in term of the orbital angular momen-
tum operatorL as

RLsp̂d = RLsfu0d = e−iLzfe−iLyu. sA7d

A momentum stateupl with p̂ pointing in the direction
su, fd can be expanded in partial waves as

upl = o
lm

uplmlYlm
* su, fd, sA8d

where uplml is defined to be quantized along thez axis.
The stateupl can be obtained by rotating a stateupẑl as
follows:

RLsp̂dupẑl = RLsfu0do
lm

uplmlYlm
* s0, 0d

= RLsfu0do
l

upl0lÎ2l + 1

4p

= o
l

o
l8m

upl8mlkẑl8muRLsfu0duẑl0lÎ2l + 1

4p

= o
lm

uplmlDm0
l sfu0dÎ2l + 1

4p

= o
lm

uplmlYlm
* su, fd = upl. sA9d

Here we used the relation between the spherical harmon-
ics and the WignerD functions,

Ylm
* su, fd =Î2l + 1

4p
Dm0

l sfu0d. sA10d

Now we rotate the stateupl with an inverse rotation op-
eratorRL

−1sp8̂d=RL
†sp8̂d=RLs0, −u8, −f8d. It follows that

RL
†sp8̂dupl = RL

†sp8̂do
lm

uplmlYlm
* su, fd

= o
lm

o
l8m8

upl8m8lkẑl8m8uRL
†sp8̂duẑlmlYlm

* su, fd

= o
lm

o
l8m8

upl8m8lkẑl8m8uRL
†sp8̂duẑlmlkẑlmup̂l

= o
l8m8

upl8m8lkẑl8m8uRL
†sp8̂dup̂l

; o
l8m8

upl8m8lkẑl8m8up9̂l

= o
l8m8

upl8m8lYl8m8
* su9, f9d

= RLsp9̂dupẑ, sA11d

where we have defined a directionp9̂ to be determined by
p̂ and p8̂ according to

up9̂l = RL
†sp8̂dup̂l. sA12d

Inserting Eq.sA9d into Eq. sA11d this leads to

RL
†sp8̂dRLsp̂dupẑl = RLsp9̂dupẑl. sA13d

Hence, the two successive rotationsRL
†sp8̂dRLsp̂d applied to

the stateupẑl can be replaced by the single rotationRLsp9̂d.
Consequently any number of successive rotations in mo-
mentum space can always be replaced by one rotation
with the corresponding rotation angles. The anglessu9, f9d
of p9 are determined by the anglessu, fd of p and su8, f8d
of p8 by

cosu9 = cosu cosu8 + sin u sin u8cossf − f8d,

sA14d

sin u9eif9 = − cosu sin u8 + sin u cosu8cossf − f8d

+ i sin u sin sf − f8d, sA15d

and are obtained from the rotation matrices of the Carte-
sian coordinates, which correspond to the rotations in Eq.
sA13d. Such a rotation matrixMsabgd corresponding to
Rsabgd is given in Eq.sA6d.
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Two successive rotations in spin space

We denote the rotation operator in spin space asRSsp̂d,
which is given in term of the total spin operatorS as

RSsp̂d = RSsfu0d = e−iSzfe−iSyu. sA16d

The rotation identity given in Eq.(A13) may not apply in
spin space. Therefore, we evaluate two successive rotations
in spin space, independent of the evaluation in momentum
space. We compare the rotated spin state or the helicity state
up9̂SLlI with up9̂SLlII given by

up9̂SLlI = RSsp9̂duẑSLl, sA17d

up9̂SLlII = RS
†sp8̂dRSsp̂duẑSLl. sA18d

It should be pointed out that here the relation between
su 9, f9d, su8, f8d, and su, fd given in Eqs. sA14d and
sA15d is still valid, since transformations of the Cartesian
coordinates are the same in both momentum space and
spin space.

Both statesup9̂SLlI and up9̂SLlII are eigenstates of the he-
licity operatorS·p9̂ with eigenvalueL, as can be shown as
follows:

S ·p9̂up9̂SLlI = RSsp9̂dS · ẑRS
†sp9̂dRSsp9̂duẑSLl

= RSsp9̂dS · ẑuẑSLl

= LRSsp9̂duẑSLl

= Lup9̂SLlI , sA19d

S ·p9̂up9̂SLlII = RS
†sp8̂dRSsp̂dS · ẑRS

†sp̂dRSsp8̂d

3RS
†sp8̂dRSsp̂duẑSLl

= RS
†sp8̂dRSsp̂dS · ẑuẑSLl

= LRS
†sp8̂dRSsp̂duẑSLl = Lup9̂SLlII .

sA20d

Moreover, because of the unitarity transformations in Eqs.
sA17d and sA18d the two states have the same norm and
can at most differ by a phase factor.

The helicity statesup9̂SLlI and up9̂SLlII are expanded in
the spin statesuẑSLl as

up9̂SLlI = RSsp9̂duẑSLl = o
L8

uẑSL8lDL8L
S sf9u 90d,

sA21d

up9̂SLlII = RS
†sp8̂dRSsp̂duẑSLl

= o
L8N

uẑSL8lkẑSL8uRS
†sf8u 80duẑSNl

3kẑSNuRSsfu0duẑSLl

= o
L8

uẑSL8lo
N

DNL8
S* sf8u80dDNL

S sfu0d

; o
L8

uẑSL8lXL8L
S sf9u90d, sA22d

where

XL8L
S sf9u 90d ; o

N
DNL8

S* sf8u80dDNL
S sfu0d. sA23d

Therefore, instead of comparingup9̂SLlI with up9̂SLlII we
compareDL8L

S sf9u 90d with XL8L
S sf9u 90d, since these are

known functions. We have two spin casesS=0 andS=1.
For S=0 the spin state is rotationally invariant and thus we
can immediately get

X00
0 sf9u 90d = D00

0 sf9u 90d = 1 sA24d

and correspondingly

up9̂00lI = up9̂00lII = uẑ00l. sA25d

For S=1 we make use of a symmetry relation for the
Wigner D functions given as

Dm8m
j* sabgd = s− dm8−mD−m8,−m

j sabgd, sA26d

allowing to leave out the case with initial helicityL=−1
and consider only six cases withL8=1, 0, −1 andL=1, 0.

The WignerD function DL8L
1 sfu0d is given as

D1sfu0d =1
e−if

1 + cosu

2
− e−if

sin u

Î2
e−if

1 − cosu

2

sin u

Î2
cosu −

sin u

Î2

eif
1 − cosu

2
eif

sin u

Î2
eif

1 + cosu

2

2 .

sA27d

For L=0 it follows that

X10
1 sf9u 90d = − e−if9

sin u 9

Î2
= D10

1 sf9u 90d, sA28d

X00
1 sf9u 90d = cosu9 = D00

1 sf9u 90d, sA29d

X−10
1 sf9u 90d = eif9

sin u 9

Î2
= D−10

1 sf9u 90d, sA30d

and thus,

XL80
1 sf9u 90d = DL80

1 sf9u 90d sA31d

and correspondingly

up9̂10lI = up9̂10lII . sA32d

For L=1 we obtain

X11
1 sf9u 90d =

1

2
hs1 + cosu cosu8dcossf − f8d

+ sin u sin u8j −
i

2
scosu + cosu8d

3 sin sf − f8d, sA33d

I. FACHRUDDIN, CH. ELSTER, AND W. GLÖCKLE PHYSICAL REVIEW C68, 054003(2003)

054003-18



X01
1 sf9u 90d =

1

Î2
h− cosu sin u8cossf − f8d + sin u cosu8

+ i sin u8sin sf − f8dj, sA34d

X−11
1 sf9u 90d =

1

2
hs1 − cosu cosu8dcossf − f8d

− sin u sin u8j −
i

2
scosu − cosu8d

3 sin sf − f8d. sA35d

Hence, for L=1 apparently XL81
1 sf9u 90d differs from

DL81
1 sf9u 90d, and correspondinglyup9̂11lII from up9̂11lI, by

a phase factor. Now the difference between Eqs.
sA28d–sA30d and Eqs.sA33d–sA35d is connected to the
value ofL. Therefore, the phase factor must depend onL
and is independent ofL8. The latter can be understood as
we see that there is noL8 dependence in Eqs.sA17d and
sA18d. In addition the phase factor also depends on the set
of anglessf, u, f8, u8d. Thus we write

XL8L
1 sf9u 90d = eiVLDL8L

1 sf9u 90d, sA36d

whereV depends on the set of anglessf, u, f8, u8d. Noting
that D01

1 sf9u 90d is real the phaseV can be given through
its tangential as

tan V =
ImhX01

1 sf9u 90dj
RehX01

1 sf9u 90dj

=
sin u8sin sf − f8d

− cosu sin u8cossf − f8d + sin u cosu8
.

sA37d

The V calculated in Eq.sA37d is also valid for other com-
binations ofL8 and L, sinceV is independent ofL8 and
L. After all these evaluations we summarize that

RS
†sp8̂dRSsp̂duẑSLl = eiVLRSsp9̂duẑSLl, sA38d

eiVL =

o
N=−S

S

DNL8
S* sf8u80dDNL

S sfu0d

DL8L
S sf9u 90d

. sA39d

We have restored the spin notationS, since Eqs.sA38d
andsA39d are general and hence apply to arbitrary spinS,
including S=0.
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