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Nd breakup process in leading order in a three-dimensional approach

. Fachruddint* Ch. Elste”® and W. Glocklé
Ynstitut fur Theoretische Physik 1l, Ruhr-Universitat Bochum, D-44780 Bochum, Germany
2Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
3Institut fur Kernphysik, Forschungszentrum Jilich, D-52425 Jilich, Germany
(Received 4 July 2003; published 21 November 2003

A three-dimensional approach based on momentum vectors as variables for solving the three-nucleon Fad-
deev equation in first order is presented. The nucleon-deuteron breakup amplitude is evaluated in leading order
in the nucleon-nucleofNN) T matrix, which is also generated directly in three dimensions avoiding a sum-
mation of partial wave contributions. A comparison of semiexclusive observables id(fthe)pp reaction
calculated in this scheme with those generated by a traditional partial wave expansion shows perfect agreement
at lower energies. At about 200 MeV nucleon laboratory energies deviations in the peak of the cross section
appear, which may indicate that special care is required in a partial wave approach for energies at and higher
than 200 MeV. The role of higher order rescattering processes beyond the leading ordeX i Theatrix is
investigated with the result that at 200 MeV rescattering still provides important contributions to the cross
section and certain spin observables. The influence of a relativistic treatment of the kinematics is investigated.
It is found that relativistic effects become important at projectile energies higher than 200 MeV.
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I. INTRODUCTION out for a system of three bosofs,6]. Here the momentum
space Faddeev equations were solved for the bound as well

During the last two decades calculations of nucleon-as the scattering state. In this work we want to employ real-

deuteron(Nd) scattering based on momentum space I:adde‘:"i\étic nucleon-nucleor(NN) interactions in a B scattering

e.quat|ons[1]- exp_enenced enormous improvement and re-.5\cjation. This means we have to incorporate spin degrees
finement. It is fair to state that below about 200 MeV pro- ¢ treedom into the formulation of the Faddeev equations.
jectile energy the momentum space Faddeev equations f@fince the input to any Faddeev calculation is the solution of
three-nucleon(3N) scattering now can be solved with very {pao Lippmann-SchwingeiLS) equation for the two-nucleon
high accuracy for the most modern two- and three-nucleoR matrix we start from the formulation oIN scattering
forces. A summary of these achievements is given in Refgeyeloped in Ref{7]. There we chose an approach based on
[2]. The approach tol8 scattering described in Refi2] is  the total helicity of theNN system as spin variable. From our
based on using angular momentum eigenstates for the tWeyint of view this is the preferred starting point to later
and three-body systems. For low projectile energies this PrO%rogress to the 8 system.

cedure is certainly physically justified due to arguments re- |, this work we consider the first term of the multiple
!ated to_the centrifugal _barrier. However, to probe tr_\e Strongscattering series built up by the Faddeev equations, rather
interaction at shorter distances one has to go to higher propan solve the full Faddeev equations for three nucleons, and
jectile energies, where the algebraic and algorithmic workoncentrate on semiexclusive breakup observables. Of par-
carried out in traditional partial wavePW) decomposition ticylar interest are the spin-transfer coefficients in then)

can be quite involved. A more crucial hurdle is posed by thesharge exchange reaction on the deuteron, which recently
fact that in N scattering calculations for projectile energies nqve peen measured at IUCF with a projectile energy of
of a few hundred MeV the number of partial waves needed, g7 pev [8] and at RCNP with a projectile energy of
to achieve numerical convergence proliferates, and limitagsg pev [9]. Since these measurements are carried out at
tions with respect to computational feasibility and accuracysiptermediate energies,” one can speculate that it may be
are being reached. It appears therefore natural to abandQQficient to consider only the first order term in the multiple
PW representations completely and work directly with vectorgcattering series. Furthermore, since the projectile energies

variables, if one wants to calculat®N3cattering at higher a6 high, we will consider relativistic effects as far as the
energies. As an aside, the use of vector variables is commQgf,ematics is concerned.

practice in bound state calculations based on variatif8jal In Sec. Il we formulate théld breakup process in a three-
and Green's function Monte Carlo methof, which are  gimensjonal(3D), nonrelativistic Faddeev scheme. We de-
carried out in coordinate space. rive the leading term of the fuld breakup amplitude, where

Momentum space calculations within the Faddeev schemg T-matrix elements are given in the momentum-helicity
which did not employ a PW decomposition were first carriedasjs defined in Ref7]. In Sec. Il we introduce relativistic
kinematics into this formulation. We will not consider a
boost of theNN T matrix [10] nor Wigner’s rotation$11] of
*Permanent address: Jurusan Fisika, Universitas Indonesia, D&e spin. The observables for tlig n) charge exchange re-
pok 1624, Indonesia. action are introduced in Sec. IV. In Sec. V we present and
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discuss our calculations for the, n) charge exchange reac- Kiab = K1 + Ky + K3, (2.9

tion in the proton-deuterofpd) breakup process. Here only o i .

the outgoing neutron is detected after the breakup. Wéeads to Eq.(2.8). In the initial stateq, is the relative
present calculations of spin averaged differential cross sedlomentum of the projectile to the target deuteron and is

tions, neutron polarizations, proton analyzing powers, andi€lated toks, as

polarization transfer coefficients at different energies. We Q0= 2K (2.10

also compare our calculations with traditional PW calcula- 07 3%Mab: '

tions. Finally, we summarize in Sec. VI. For clarity of description we will in the following denote
the breakup amplitude d3{"(p, q) and suppress all other

Il. THE NONRELATIVISTIC Nd BREAKUP AMPLITUDE guantum numbers.
| In this work we only want to consider the leading term of
In the Faddeev scheme the opera for the Nd  the full breakup operatds!™". This means we only consider

breakup process is given §2| the leading term in the Faddeev operafgrof Eq. (2.2) and
U(f)ull =(1+P)T. (2.1) defln_e the breakup operatd, in first order in theNN T
matrix as
Here T is the Faddeev operator obeying the Faddeev B
equation[1] for the breakup process of three identical Up=(1+P)TP. (2.19
particles, The matrix elements ofly(p, q) with respect to the final
To=TP+TGPT,. (2.2 :gd initial states from Eq<€2.5 and(2.6) are then given
The operatorT stands for theNN t matrix, andP is a 0 OwM
permutation operator defined as Uo(p, a) = (pams MM 7575 Ug|doMgy 77 ¥ g )
P = P;,Pys+ P1sPss. (2.3 = (pAmyMoMe T 7,73 (1 + P) TP|qom, W)

2.1
The free 3 propagator is given by, The matrix ele- (2.12
ments of the breakup amplitud#}"'(p, q) of Eq.(2.1) are  From now on we mean by thid breakup amplitudéor

defined as breakup amplitudethe matrix elementyy(p, g) given in
full il o owm Eqg. (2.12 and by the fullNd breakup amplituddor full
Uo"(p, Q) = (pamgmemgay 75| Ug | dome; 7V g 9) breakup amplitudethe matrix element{"(p, ) given in

_ 1+P)T 0 OyMay Eq. (2.4).
(PAMaMoMmy: 7574| (1 + P)Telaommy 71 W) The breakup amplitud&y(p, q) from Eq.(2.12) is com-
(24 posed out of three terms,

h
where Uo(p, @) = UP(p, @) + UP(p, 9) + UP(p, q) (2.13

[PAMyMeMam 773) = [AMy 7)) PMeMe ) (2.5 itk
is the final, not-antisymmetrized freeN3state. The quan- o _ 0 OmM
tities my, = (i=1,2,3 are the spins and isospins of the Yo (P.0) = PAMy MMy 7273 TPIdoMg 7V ),
three nucleons. The initial state, in which only the deu- (2.19
teron statd\lfd""d> is antisymmetrized, is given by

2.6  YEP D= {pamamemsr 77| PiPosTPlagmly v,

oM WY = [gomEy )W'.
(2.15

The indexM, indicates the projection of total angu(ljar (r)no—
mentum of the deuteron along an arbitraraxis, my, 7
are the spin and isospin of nugcleon “1" acty;lng arsnstlhelpro- UG (P, @) = 1{PAMameos 71 775| P1aP2aT Plaomg 730/,
jectile. Without loss of generality nucleon “1” is singled (2.16
out as projectile, while the other two nucleons, “2” and
“3,” form the two-nucleon(2N) subsystem, i.e., the deu-
teron in the initial state. Jacobi momergandq are used
to describe the [§ kinematics in the final state,

Here the final free B states are labeled 1, meaning that
nucleons 2 and 3 form theN2subsystem. The spin and
isospin quantum numbers must be read in the order 123.
Applying the permutation operatdt;,P,3 to the final state

p=1(ky—ka), (2.7 of UP(p,q) given in Eq.(2.15 leads to
q= Z[kl — Lk, + ka)] =Ky = 2Kpap (2.8 ng)(p, q) = 1(P23P 120 0My MM 74 75 73| TP oM 75 W)
3 2 3Rlab- : B 0 _0gMg
Here thek;'s (i=1, 2, 3 represent the laboratory momenta = (PAMaMemys 7 7275 TPIGoMg 71 W' (217

of the three nucleons. Defininlg,, as the laboratory mo- This is now the final state where nucleons 1 and 2 form
mentum of the projectile and applying momentum conserthe 2N subsystem. Accordingly, the spin and isospin quan-
vation tum numbers associated with the three nucleons read in
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the order 312. In order to have the same final states agnly for one of them, which we choose to h&(p, ).
U§’(p, ) in Eq. (2.14, we need to transform the final For calculating subsequently®(p, q) and U (p, q) one
state such that nucleons 2 and 3 form th¢ slibsystem. only has to perform the following replacements:

This transformation is achieved by the following relation for

among the Jacobi momenja2]

P1="3P3~ 303 U1 =Pz~ 303, (2.18 Ug(p, a):{r, Mi1,2,3 = {7 Mhz2,3,3,
where the labels 1 and 3 indicate the nucleon being p—-ip-2q, g—p-1iq, (2.22
singled out. This leads to
Ug'(p. o) =1{(- 3p - ) (p - 30) for
X MMMy 757373 TP|gomG 72w g'd). U (p, q):{r, iy 23 — {7 Mhz1a
(2.19

p—-3p+3q, q—-p-3q. (223

Using another relation between Jacobi momdnii2| N . _
For calculatingUy’(p, ) we start by inserting the follow-

P1=-— %pZ * %qZ’ Qi=~P2~ %qZ' (2.20 ing completeness relation for the frell 3ystem:
we can obtairU(p, g) in a similar fashion as
Ug'(p, @) =1((-3p + 3a)(-p - 30) > |dp f dalpamumemeri m573)
X MMy Mo 7371 7| TPIgoME, 7 W) msfllr:i?g
(2.29 X(PAMa MM 7,73 = 1 (2.24

Since U@ (p, q) and U (p, q) differ from U’(p, q) only
in their variables, it is sufficient to work out an expressiontwice into Eqg.(2.14), which leads to

U, a)= > f dp’ f dq’(pamyMeMe T 7273 TP’ Q' My MM 7 75 75)
mgmemeg
s

! r_r ! g /oo

X > fdp”fdq”(p’q’nglmgznlsarl7-273|P|p”q”mglm’s’zr‘rg?,TlTZTS)(p”q”rn’s’lrn’s’zm33717'27-3|qonﬁlr(l)‘lfg"d>
I U mg3

1!
nomnn
717273

= X J dp’(PMeuM 73| T(Ep) [p' MM 73)

’ rr
MM 773

X > f dp”(p’ MMl T T4{amey 71| Plaomg 7 |p " mmis 7y A)(p” mmis 7y 75 Wi'e). (2.25
MMy

In arriving at the last equality we used the fact thatcts only in the two-particle subsystem together with momentum space

properties of the initial state.
The NN T matrix is calculated at a center of magsm,) energyE, of the 23-subsystem

E Ep—2=i(q2—q2)+Ed (2.26)
m 4m © ’

p

which does not necessarily correspond to the intermediate relative momentae deuteron binding energy is repre-
sented byE,, andm stands for the nucleon mass.

Using the relations for Jacobi momenta given in E8sl8 and(2.20) the evaluation of the permutations in Eg.25) leads
to
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(p' MMl 775 (Amyy 71| PldomSy 79) P Moy 75 75)
= (p'Kaldolp"2 {mumbmr 7l momis 7 74), + 1(p'Kaldo)lp s mumbmlr 75l momis 7 7)s
= «(p’Kal=p" = 300)|= 30" + o)1 KMstMGMig7y T3 MM MG 75 72075) 1
+1(p’[{allp” = 300)|= 3P" = §do) 1My MMy Ty 5l mmieml 75 7579),
=8(p" = m)p" = 7") S iy, Ot w0, O, Oy 2072 067 10+ 8P + ) A" + 78 ) S oy Sy et om0, O 20y 080, (2.27)
where
7m=3q+do, @ =9 300 (2.28

As an aside, the variables are arranged such that édahction only contains one integration variable. Inserting Eq.
(2.27) into U (p, ) in Eq. (2.29 leads to

UP(p, @) = X (pMoMgmoms| T(E,) | mmimlgrimi)(ar' migmg rir [ W)

M3
+ D (pMuMg o3 T(Ey)|- MM 79— 7' MMl 7y 75| W)
m, 7y
= D {(pmomgryms| T(E) |mmml f27 X o' mimg 7/ 7| W i'e) + (pmomagry 7| T(E,) Pogl rmymi 797" )
mér’

X (' mimg 7' 7| Pog W)}
= 2 (PMeMg w3 T(Ep) (1 = Pog)|mmg m 7 )z’ mimg, 7/ 7| W)

!
msT

=X a<pmszm537'27'3|T(Ep)|77mglmé787"><77’m§msl7" [ Wy'9). (2.29

r_r
msT

In arriving at the last equality of Eq2.29 we made use of the antisymmetry of the deuteron stﬁ{¥9>, and defined
APMM 7, 73 T(Ep)|mmm(7)7') as

o PMoMig 7 T(Ep) M m{ 17") = (pPMoMegmy | T(E;) (1 = Pog) | mmgme i) (2.30
We denote the matrix eIemeg@omszmsg7273|T(Ep)|a-rmglmgrgr’) as physical representation of thN T matrix, physical
meaning that théNN basis stategpmy,mg7,73), contain the individual spins and isospins of the nucleons.

Since the deuteron contains only two definite angular momentum states, it is reasonable to apply the standard partial wave
expansion

[wid =3 dp’p'2|p'(Is)jm;t<p'<ls)jm;tlwd>:; J dp'p’?p’ (11)IM; 0)s(p’). (2.30)

Isjmt

Here|p’(Is)jm;t) is the standard partial wave basis, apjtp’) represent the standascandd waves of the deuteron. The
projection(z'm,mg, 7' 7| W9 on the deuteron state in E(.29 is then explicitly worked out as

(m'mimgr oW = fdp,p,2<77,mémsl7'lTl|p/(|1)1Md;0>¢l(p,)
i
=(7'm[0)> C(lll;M,Md-u)fdp'p'2<ﬂ’|p’|ﬂ><m§ms1|1,Md—M>tlf|(p’)
I

11 . ! . o ll . !’ !
= 0| 5507 7| T ClLL Ma= Y1) €| S3LmMMs e s

11 11 R
= C(EEO;T,H)C(Eél;mémSl)zl: CI11;Mg = mg = Mg, Mg+ My) Yy - -mg (7)) (7).
(2.32
Finally, inserting Eq.(2.32) into Eq. (2.29 we obtain the first part of the breakup amplitudél)(p, g) as
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(1) 0 7 0 /s 11 . 11 e
Up'(p, @) = 2 a(pmemar,maf T(Ey) | amami7i7')C| 550:7 71 |C| S5 1immy
X 2 C(I11;Mq = Mg = Mg, Mg+ Me)Y) -y -y, () ¢4 (7)

( )1/2+Tl

> C( 5L msmsl)a<pmszmssrzrslT(Ep)lwmslmsm%

x 2 c<|11;Md = M = Mg, M+ W)Y g () (). (2.33

Equation(2.33 may serve as a starting point for further expressionsU@l(p, q) to be used in the explicit calculations. It
shows howugl)(p,q) depends on the PW projected components of the deuteron and ddNHematrix in a physical
representation. In our calculation of tidd breakup process we employ tiNN t matrix in the momentum-helicity basis
[p;pSA; )™ [7], whereS t, A are the total spin of theNsystem, the total isospin, and the helicity. The labalmeans that
the basis state has a definite parity, and is antisymmetrized. The connection of thematrix elements
a(prnszrnSgTZTg|T(Ep)|mnglm;7%7J) to those in the momentum-helicity basis, namé’;ﬁt,(p, m,E,), is given in Ref[7]. Here we
want to be more general by letting the nucleon typgss;, 7‘1) 7, being arbitrary but employing Kronecker symbols to ensure
charge conservation,

l . , 11 11
a< 7273m52m53p|T(Ep)| T~ ’T]_mslmsﬂ'> = 1.2_‘_7.3 7'(1) 7.1 I(A0¢p_A0¢")E [1 - 7]11.( S+t]C(§§t 7'2T3>C< 2 2t Tl’ Tl)
St

L1 7TSt
X C EES;mszmssAo 228 maymAg | > dAA 6,d’, A,(9) TN (p, mEy).

AA'
(2.39

In the above expressiod ,A(H) is a rotation matrix[13]. Using Eq.(2.34 we obtain U(l)(p g) in terms of theNN

T-matrix eIementsTXit,(p, m,E,) in the momentum-helicity basis as

(_ )1/2+T1

) , 11 “
Ug’(p, a) = eyt By 2 e"<Ao¢p‘Ao¢w>c(5§1 ;m;msl)g C(1115Mg = mg = my, M+ M) Yy -y -m (7)o (7)
mg

4\!’5
x}‘,[l— (—)S”]C(llt' )C(llt ) )c(lls- A)C(lls' 0 ’A’)
N 550 723 oot TN 55 s MsoMs3Ag 52 Ms Mg A

X X d} (B, 1 (0 TR(P, 7). (2.39
AN’

Now let us concentrate on thBIN T-matrix elements X/S\t,(p p’ Ep) so thatp’ points in thez direction and then
TXit,(p, p’;Ep) in the momentum-helicity basis. For the apply the relation given in Eq2.36). With R(p’) being a
calculation ofNN scattering it is convenient to choose the rotation operator working in momentum and spin space, it
z axis as the direction of the initial momentd. It is  follows according to Ref[7] that

shown in Ref.[7] that in this case the azimuthal depen-

dencies of theT-matrix elements can be separated as st
Tia (P P’ Ep) = ™(pi pSASHT(E)[p;p'SA ;)™

="4p; PSAT(EpR(P")|p'2;2SA" ;)™
which then allowed to reduce the LSE's for ="(p; PSAR(P)T(Ep)|p'2;28A" ;)™

7TSt
T (P, p'Z,Ey) to be the ones forTAA,(p p’, cos6;Ey). :”a<RT(f)’)p;f)SA;t|T(Ep)|p’2;2SA’;t>”a
(2.37

Xit/(p p,2 Ep) eIA ¢TXit/(p1 p’! CoseyEp)! (236)

Thus, in order to calculat®&){’(p, q) we have to find a

relation betweenT7s,(p,p’;E,) with arbitrary p’ and

Xit,(p p’, cos@’;Ey), whered” now depends o andp’.

This is done in the following way. First we rotate Here
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Ip;PSA; D™ = J[1 - 7,(=)S](1 + 7,)|0)|p; PSA),
(2.38

and thus,

RI(P"[p;PSA;H™ = 3[1 = 7,(=)*"](1 + 7,)[HR'(B")
X|p;pSA). (2.39

The action of R'(p’) on the statelp;pSA) leads to two
successive rotations as

R'(p")|p;PSA) =R(0, - ¢, — ¢ )R(¢60)|p2; ZSA),
(2.40

and the result is(see the Appendix for the derivatipn
given by

RT([A)’)“), pSA> - eiAQR(¢r/0110)|p2;2SA> - eiAQ|pH; f)”SA>
(2.41)

with
cos A" =cosf cos +sin 6 sin &'codp— '),

(2.42

sin 0”6 = - cos 6 sin ' +sin 6 cos @’ cod— ¢')

+i sin @ sin(¢p— ¢'), (2.43
S S 1ot S
JAQ D@6 O)DNA(‘WO)’ (2.44

Di,A(¢//0HO)

WhereDi,A(QS&O) are the WigneD function[13]. Insert-
ing Eq.(2.41) and then Eq(2.36) into Eqg. (2.37) yields

TP, p'; Ep) = A p" 5SA | T(E,)|p'2;2SA ;)™
:ei(A,(ﬂ’_AQ)TX/S\I'(p’ pr, cosd”; Ep)a (245)

where the exponential fact@® ¢ s calculated as

S
NES D (¢#0)DY (¢ 6'0)
ei(A’(ﬁ"—AQ) — eiAr(bu =—.

Djs\k/A((bllallo)
S
S, N (O)ds, (6)
N=-S
= 2.4
£ ) (2.4

Returning to Eq(2.35, by means of the relation given in
Eq. (2.45 we arrive at our final expression fdulgl)(p, q),

PHYSICAL REVIEW (58, 054003(2003

_\1/2+7;
U(Ol)(pv q) = 4\&'5 57'2+7'3,T?_—7‘1

xS e—i(Aoqsp—A()dsﬁ)C( %% 1: mémsl)

mg
X 2 C(111;Mg = m{ — my, mg + myy)

XYt ey () ()

11
X 527;1 (1-n,(- )SH)C<§§'[; 727'3>

11 11
X C 55'[;7'1,—71 C EisimszmﬁAO
11 45, ., S S
X C EésamslmSAO 2 dAOA(ep)dAéA’(a’"’)
AA’
X N PADT (D o cos @) (2.47)
with

COs 6’ = COS 6,C0S 0. + sin 6,sin 6,C0S (P, — ¢,)

(2.48
DGR, (0,6, (6,)
g\ ¢'-AQ) - NS <
dy,,(0)
(2.49
IIl. RELATIVISTIC KINEMATICS IN THE Nd

BREAKUP AMPLITUDE

In the preceding section the breakup operddgp, q) is
derived within the framework of the nonrelativistic Faddeev
theory. Since our goal is to study breakup reactions at inter-
mediate energies, we want to consider the influence of rela-
tivistic kinematics. This means that we not only have to em-
ploy relativistic energy-momentum relations, but more
importantly have to reevaluate the Jacobi momenta, carry out
corresponding Lorentz transformations to the two- and three-
particle c.m. subsystems, and employ a relativistic descrip-
tion of the cross section. For our derivation we adopt the
formulation given in Ref[14]. For clarity we will describe
the most important steps in detail.

A. Jacobi momenta

Let a system be described by the energy and momentum
vector(E, k) in one frame. Then, in a different frame moving
with relative velocityu, the system is described K§’, k'),
connected by a Lorentz transformatidrfu) to the first
frame,

(E", k") = L(u)(E, k), (3.1

k' =k + (y-1)(k - 0)0 - yEU, (3.2)
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E'=yE-k-u), (3.3
-1 (3.0
Y= \’rl_uz' )

Using these relations we can bring ol 8ystem from the

PHYSICAL REVIEW C 68, 054003(2003

calculate the kinetic energlg, in the 23-subsystem, that
is,
Ep=My3—2m=2m”+ p* - 2m. (3.19
St

Thus theNN T-matrix eIementsTXA,(p, m, oS0’ ;Ey) in
Eqg. (2.47 will be calculated for the energ§, given in

laboratory frame to the c.m. frame and find the corre-gq (3.14.

sponding Jacobi momenfandq in the final state and,
in the initial state.

In order to obtain the Jacobi momentupwe apply the
following Lorentz transformation

As in the preceding section we choose without loss of

generality the two-nucleon subsystem to consist of nucleons
2 and 3, and let nucleon 1 be the spectator. To derive the
relative momentunp of the subsystem in its c.m. frame, we

employ the Lorentz transformation

k23
ey 3.5
"By 39
ELp) = Enk)=LWEsk), (36
(E-p)= Bk =LW(ES k9. (3.7

_ Kiap
u= g, (3.15
(Ef, q) = (Eg, kp) =L(U)(Eq, ky), (3.19
(Ezz —q) = (Egs Kp9) =L(U)(Eps kpg),  (3.17)

whereE, is the total energy in the laboratory frame,

(3.19

Similar to p, the Jacobi momentum acquires a relativis-

Eo=my+Ejap=E; + Eps.

Let us define the following quantities for the 23- tic correction term and is given by

subsystem:

k23E k2+k3, (38)

Ezgz E2+E3, (39)

which are connected by a Lorentz invariant relation as

E2;— k3= M2, = 4n?. (3.10

HereM,; is called the invariant mass of the 23-subsystem
and equals the total energy of the 23-subsystem in its c.n{
frame. According to Eq.3.2) and the transformations

given in Eqs(3.5—(3.7), the Jacobi momentum is given
as[15]

EZ_E3 ) (3 11)

—1(k ks) lk(
P-Z 27 Ka) = 5Ka3 Eyet Mys

The last term in Eq(3.11) exhibits the relativistic effect

in the definition of the relative momentum. Since in the

c.m. frame the energf; is equal toE;, the total energy
Mo in the 23-frame is given as

Mg = Ej + E = 2E5 = 24m? + kj? = 2/m? + p2.

(3.12

Starting with Eq.(3.12, employing energy and momen-

tum conservation together with Eq8.8)—3.10 the magni-
tude ofp is calculated as
P=3
XM = 2mP + 2My(Ejap — E1) = 2EipE1 + 2KiapkyCOS fiap.
(3.13

1 Kiab ( (k1= Ka3) "Kiap )
q= 2(k1 Kag) + M, Eo+ My (E1—Ep) |.
(3.19

Here My is c.m. total energy or the invariant mass of the
3N system
Mo = E; + Ejs, (3.20

vhich is connected to the laboratory total eneigyand
the laboratory total momentuiky, by the following Lor-
entz invariant relation

(3.21

The energie€; andE}; are given in terms of the magni-
tudes of Jacobi momengaandq as

E2 - k2, = M3 = 9n?.

£} =\ = i

(3.22

Ejs= VM35 + k33 = Va(m? + p?) + 2. (3.23

With Egs.(3.16—(3.18), (3.20), (3.22), and(3.23 we get
for the scalar product in Eq3.19),

(k1= Kz3) - Kiap = ki ~ k35
=Ef - Ej3—m’ + M,
= (Ey ~ EpdEo— (E* - E55
= (E1— E29)Eo — (E; — ExyMo.
(3.29

Inserting this result into Eq.3.19 leads to a final expres-

Knowing the total energyM,; in the 23-frame one can sion forg,
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1 process in the laboratory frame as
q= E(kl —Kkz3)
S(ky, ko, kg) = (kikoka|Skiapkg) (3.32
+ Kiap ( (Ey — Eo9)Eo — (E1 ~ EzgMo _ (E, - E23)> and in the c.m. frame as
2M, Eo+ Mg
S(p, q) = (pa|Sdo = (pa|Sdo)- (3.33

1 1 Ei—Ex+E;—Ejp : :
= E(kl_ Kog) — §k|ab E M In the above equation we omitted the deuteron sjértg
0" o in the initial state, but showed its momentuky in Eq.

E,+E; (3.32, though its value is zero. The momenmgaq, andqg

=k1 = Kiap SN (3.29  are the Jacobi momenta calculated in E@s11), (3.25),
0" and (3.29). The statesk;k,ks) and |kpky) are related to

For the last equality total momentum conservation waghe statespq) and|qy) by the following relations:

employed. With the help of Eq$3.22 and(3.23 we can

write Mg as k1koka) = [kp)[kokas)

— 12
Mo = E} +Ejy= \nP+ G2 + V4(mP + pd) + 2. (3.26) = J4(Ky, ka)[k)|pkaa)

— 1°1/2 —1/2
Starting from Eq.(3.26 we obtain after some algebra the = Ik, k) Ky, kaglpalka + kza),

magnitude ofg as (3.39
q= ﬁ\/{mg- B+ 41— 16mA(mE+ P, Kiake) = V2K o K K. (3.39
0

The Jacobiad(k,, k3) of the transformation from the vari-
(3.27) ables(k,, k3) to (p, ky3) is given by[14]
where the value oM, can be calculated from Eq@3.2
0 43.21 d(kp ka) |  EE3 Mapz  4E;E;

as J(ky, kg) = = = ;
— . 2787 1 (pkod) Exs E;E;  ExsMys
Mo=VE3 - K2, = VP + M5+ 2myEpp.  (3.29 (3.36)

Finally we turn to the initial state, calculate the JacoblWhere the last equality results by means of Ej12 for

momentumd, the ener.gief,’ab of the incoming n'uclejon, M,z Similarly, the Jacobiand(ky, k,s in Eq. (3.34 and
and E} of the deuteron in the c.m. frame. Replacing in Eq'\](klab ko) in Eq. (3.35 are given as

(3.19 the quantitiesk, with K4, E; with Ej5p, koz with zero,

and E,; with my, the Jacobi momentumy, is given as d(kq, k EE;s M
23 My Mo IS 9 3Ky, Kyg) = - (kl +2|j) _ Ezs , 0/ . (3.37)
1 k k2 (ql 1 23) 0 E1E23
_ lab lab
Jo= Eklab oM\ Bt M. (BEjab = My)
ormon o 9 (Kiaps Kg) | _ Eapmg Mg
J(k|ab, kd) = = . (338)
1 Kiab 3 (0o, Kian) Ey E[E]
= Eklab + W[Eo — Mo = (Ejap— My)] 0+ Blab 0 Flab=d
0 Thus, one can finally relat&ky, k,, k3) to S(p, q) as
_ Iy
= M Kleb (329 Sky, ka, kg) = (kikoks|Skiapka)

=YK, ka) I Ay, K2l I ™ 2(Kyaps Ko)
X (k1 +Ko3(pa|Sao) Kian

The energieE,, andE/ are obtained using Ed3.3) as

, _Eo k)1,
Elab = Mo Eab ) M—O(m +MyEjap),  (3.30 = 8(kq + Koz = Kiap)
X{I(Ko, ka)I(K1, Koz I(Kiap, ko)t 2S(p, q),
. E 1 3.39
Ei= omy= (Bt mgmy. (33D 1999
0 0 where thed function ensures total momentum conserva-

It can be shown tha/,, andE, sum up toM, as required ~ tion.

by total energy conservation in the c.m. frame. As last step we need to conne§ky k; k) to the
breakup amplitud&)y(p, g) defined in Eq(2.12), and which

B. S matrix is related toS(p, q) as

For a correct treatment of relativistic kinematics, we still S(p, q) = = 27 8(E; + E55— Efyp, — E)Uo(P, Q).
need to connect th&matrix element in the laboratory frame (3.40
to the Nd breakup amplitude. Suppressing all discrete quan-
tum numbers we define tf@matrix element for the breakup Inserting Eq.(3.40 into Eq. (3.39 this gives
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Sk, ko, kg) = = 271 8(Kq + Koz = Kyap) S(E, + Eba— Ely — EL) d°c mepk, 1 .
1, "2, R3 1 23 lab 1 23_1/2 lab d = 277 4 2k 1é E dp|U0(p, Q)|2,
X {I(ky, k3)I(K1, Kog) I(Kiap, Kg)} " Ug(p, q). dE;dk, lab O mgmemgs
(3.41) Mg Mg
(4.2

By means of the identity
wherek, determineq via Eq.(2.8) andp via Eqs.(2.26)

8Ky + Koz — Kiap) S(E} + Epg— Elop — EL) and(2.8). The relativistic cross section is given by

= 8(Kq + Koz~ Kjap) O(Eq + Egg— Ejgp — My) do=(2 )4E'ab5(k tKoam K SEs + Era B :
E|+E}+El, +E} o=\em Ko 1T K237 Kiab) AAE1 + 2237 Hiab My

, (3.42
Ei+ Exzt BEjapt My X T%(p, q)|Ug(p, 9)|dk 1dk ,dk3,

4.2

we obtain the relation betwee®(k,, k,, k3) andUq(p,q)  where theS-matrix element from Eq(3.43 is used, and
as all energies obey the relativistic energy-momentum rela-
tion. The cross section for the inclusivd breakup pro-

cess is calculated as function of the directilzapand the
kinetic energyE, ;=E;-m of the detected nucleon. Using
the relation

S(ky, ko, kg) = = 2711 (K1 + Koz = Kiap) A(Eq + Exz— Ejgp — My)
Ei+Eps+Ejyp+ Eg

Ei+ Exzt Bpgp t My

X {I(Ky, k3)I(Ky, K9 I(Kiap, kgl Y2Uo(p, ) dk, = di;Kodk, = Ek,dEdk,; = EqkydE, ,dk,  (4.9)
== 27 8(Kq + K3 = Kjap) (Eq + Egz— Ejgp — My) leads to
X T'(p, q)Uo(p, 9)- (3.43
97 o EeE [ e stk + Koo Kine)
Here the functionl'(p, q) is defined as dE.dk —lem Kiab 2UR3AARL T R23 ™ Riab
1UR]
6.0 E} +Ejs+ Ep+ E} X 8(Ey + Ezg = Ejap — Mo T2(p, @) Uo(p, )|
I'(p,q) =
E..,E .k
F Bt B Ty - (2= | dcaapi ko
X {I(k2, K3)I(K1, K2 I(Kjap, Ka)} 2 Kiap
_[MyEIESE L bEq a4 X 0Ky + Koz~ Kigp)
© V 4EEEE My (3.44 X 8(Ey + Ezz— Ejap — my)l%(p, 0)|Uo(p, )

4FlanE1Ky Iab Eiky 4EE3

T Jd P E s
X OBy + E23‘ Eiab~ Ma)T%(p, 0)|Uo(p, )
EjapE1kip
kiabM 23

In the nonrelativistic limit the functiod’(p, q) equals 1.

IV. OBSERVABLES IN THE PROTON-NEUTRON CHARGE

EXCHANGE REACTION

=(2m)* J dPELESI'(p, 0)[Uo(p, @)%

So far we derived the breakup amplitudg(p, q) in first
order in its most general form. As application of a proton- (4.9
deuteron breakup process we consider (fhe) charge ex-
change reaction. In the experiments we are going to analyz& addition we used Eq3.36) for J(k», k3) together with
only the scattered neutron is detected. Thus, when calculat-
ing the observables of this reaction, all possible directions of
the two undetected protons must be taken into account. This

is accomplished numerically by integrating over the relative

4p
0= M + Ky = VAT + ) + 3= —dp.
23

directionp between the two protons. In our numerical appli- (4.5
cation, we consider the spin averaged differential cross Se(befmm a functionp(p, q) b

tion in the d(p, n)pp reaction and selected spin observables. 9 PP, 4) by

These are the neutron polarizati&y in the d(p, N)pp reac- R

tion, the analyzing poweA, in the d(p, n)pp reaction, and o(p. Q) = 2ElabE1E2E3F2(p, q= E1E23ElabEd, (4.6)

the polarization transfer coefficienB; in the d(g, fi)pp re- Mos 2my
action. Comprehensive descriptions and derivations of these

observables can be found in, e.g., Rei.
The nonrelativistic cross section is given as

allows to write the relativistic cross section similar to the
nonrelativistic one, that is
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do p(p, q)pky 1 R tion components are calculated once and interpolated to the
——=2n)* ok 5 > dp|Uq(p, ). momentas’. For all the interpolations we use the modified
dEdk, lab Fmgmomg cubic Hermite splines of Ref16]. Typical grid sizes are 80
MM points for cos#” and 50 points forr. In case ofE, (and p)
(4.7) and in the context of the three-body amplitude we need the

. St . .
Here we restore the summation over final spins and thé\”\I tmatrix Ty, as a function ok, for given three-nucleon

averaging over initial spins states. In the nonrelativistic®"¢"9'¢S fsgn 0'to 2/3 of the pucleon Iabo.ratory energy. We
case, the functiom(p, q) reduces ton?, leading to Eq. calculateT ', at 40 energy point&,, according to the larg-

(4.1). Next we give the polarizatiorP,, the analyzing st energy we consider. Of course, if we calculate at a

power A, and polarization transfer coefficient®;  Smaller nucleon laboratory energy, we do not need all 40

=1/6l,T{Uq(o-))Ul(o D)} as energy points. The angular variation®f, is stronger at the
higher energies, thus one needs a bigger angular grid at the

p - iTr{U Ul(o - )} 4.9 higher energies. For simplicity we take the same number of
°7 6l 0~o ’ ' angular points for all energies.
1 PR V. RESULTS AND DISCUSSION
A, = —Tr{Uy(o - H)Ug}, (4.9
6lo Our numerical calculations are based on two diffeféNt
potentials, the Bonn-B17] and AV18[18] potentials. In the
1 discussion of our results we consider three different aspects.
- = AT B
Dnin = 6|0Tr{U0(0 MUl - A} (4.10 First, since we present a new way of calculating the breakup

process, namely without partial wave decomposition, we
1 need to compare our results to those obtained in traditional
Dys= —TrH{Uq(o-9Ul(o - 8)}, (4.11)  partial wave based calculations. After having established the
6lo feasibility and correctness of our calculations, we will ad-
dress two physical questions, namely the importance of res-
1 ot cattering contributions in thép, n) charge exchange reaction

Dys= 6_|0Tr{U°(U'S)U0(U'I ) (4.1 at a moderately high energy and the effect of different de-
scriptions of the kinematics, i.e., we compare the relativistic

1 treatment introduced in Sec. Ill to the nonrelativistic descrip-

D TH{Uq(o - Ul(o -8}, 4.13  tion.

s’ 6l
A. Comparison with partial-wave calculations

1 - R
Dy = gTr{Uo(U DU 1M}, (4.14 In this section we compare our 3D calculations with tra-

0 ditional PW calculations at different energies. The aim here

where is twofold. First, we want to convince ourselves that our
newly developed 3D formulations agree with well estab-

lo= }Tr{UOUEQ}. (4.15 lished PW calculationilg]. Second, we want to find out
6 from which energy regime on our 3D method surpasses the
state-of-the-art PW calculations. As already mentioned in the

For simplicity we suppressed tAhp-lnteg[atlon in Egs. Introduction, in PW calculations the number of partial waves

(4.8—(4.15. The unit vectorsi, I, § A, I’, and§" are  necessary for a converged result proliferated as the energies
defined as increases, leading to limitations with respect to computa-
tional feasibility and accuracy. Our new 3D scheme does not
o Kiap X ky  ~ » . . "
A=A'= ——— |=Kky, 8=n0XI, suffer from these limitations. While it is increasingly difficult
[Kiap X K4l to exhaust quantitatively the angular variation of B t
matrix by using angular momentum states, there is no prob-
"=k, ,8=n"xI". (4.1 lem to represent it by a suitable grid of angles, as we have
o _ ] shown in Ref[7].
For the explicit calculation of théld breakup amplitude  Qur first comparison is carried out at a proton incident

Uo(p, ), Eq. (2.47, we need theNN T-matrix elements. energy ofE,,,=100 MeV and a neutron laboratory scattering
They are obtained by solving the LS equations for a givemngle ¢,,=13°. The calculations, which are based on the
NN potential in 3D as described in R¢7] at fixed momenta, Bonn-B potential are given in Fig. 1, which shows the dif-
angles, and  energies. ~The matrix  elementSerential cross section, the analyzing powgr and the po-
Tr5(p, 7, cos ' ;E,) are then obtained by interpolatingin larization transfer coefficienDg. The solid lines represent
cos@', andE,. This is more economic than solving the LS our 3D calculations, the dashed lines the corresponding PW
equation every time for the corresponding energies and iniealculations[19]. Here we use the notatignfor the highest

tial momenta. Similarly the partial wave deuteron wave func-2N total angular momentum taken into account in the PW
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2.6 T

3
PW: =7 J=313 o

[mb/(MeV.sr)]
[mb/(MeV .sr)]

dc
by

3
PW: j=7 J=31 /13 ------

Q:DB»O.OIS

-0.070 1
0 100

-0.05 L 0.00 L
0 50 100 70 130 190

E, [MeV] E, [MeV]

FIG. 1. (Color onling The spin averaged differential cross sec-  F|G. 2. (Color onling Same as Fig. 1, but for projectile energy
tion d’o/dE,d¢ [mb/(MeV sp], the analyzing powefy, and the po-  E_ =197 MeV. The solid line represents the 3D calculation, the
larization transfer coefficierdg for the (p, n) charge exchange pro- gashed and dotted lines represent PW calculations with diffehént 2
cess at projectile energi,,=100 MeV and neutron laboratory igtg) angular momentunj and total 3 angular momentund as

scattering anglé,,=13°. The solid line represents the 3D calcula- jndicated in the figure. All calculations are based on the Bonn-B
tion, the dashed line the PW calculation with7, J=31/2. Both  potential.

calculations are based on the Bonn-B poterjtla]].

differential cross section reveals that each additional angular

calculation, and] for the highest Bl total angular momen- momentum of the PW calculation results in an additive con-
tum. The figure shows that both lines are almost indistintribution, but even the highest possible number deviates
guishable, thus validating our new scheme. At this point weabout 9% from our 3D result. This is the most extreme case,
also would like to mention that the channels used in the PWor the analyzing poweA, and the polarization transfer co-
calculation, namely=7 andJ=31/2, constitute today’s limits efficient D the PW calculation with=7 andJ=31/2 agrees
for a PW calculation. In addition, we carried out compari- reasonable well with our 3D result. It is interesting to note
sons at lower energies, e.g., at 16 MeV, where a PW calcuhat forDg the 2N total momentunj is much more important
lation with j=5 andJ=31/2 is in perfect agreement with our to reach convergence than the totdl BiomentumJ.
3D calculations. At this point it is appropriate to make some general re-

Next, we turn to a slightly higher projectile enerds,, marks. In this work we restrict our 3D approach to the lead-
=197 MeV, and carry out the same comparison. The resultsng term in the Faddeev multiple scattering series. Thus we
for the differential cross section, the analyzing powgrand  have no insight whether the fully summed series would lead
the polarization transfer coefficielly are shown in Fig. 2, to a better agreement of 3D and PW approach. We also re-
where the solid line represents our 3D calculation. The PWstrict ourselves to semiexclusive processes, and cannot draw
calculations are shown with increasing number of partialany conclusions on 3D and PW calculations with respect to
waves fromj=5, J=25/2 to j=7, J=31/2. The peak of the elastic scattering observables or full breakup observables.
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B. Contributions from the rescattering terms

One of the arguments to study the semiexclusie
breakup process in first order in ttNN T matrix is that at
higher energies the rescattering term generated by the solu-
tion of the full Faddeev equations become less important.
For a comprehensive study of the importance of those res-
cattering terms it would be necessary to compare first order
calculations with full Faddeev calculations over a wide range
of projectile energies and for many different experimental
situations. Unfortunately we cannot do this at the present
stage, since three-dimensional full Faddeev calculations do
not yet exist, and traditional, partial wave based Faddeev
calculations are limited in their energy range. Thus we take
as compromise a medium energy of about 200 MeV, and
compare thép, n) charge exchange observables calculated in
our first order 3D approach with the ones obtained from a
full, partial wave based Faddeev calculation. We choose the
proton energyE,,=197 MeV, since there exist recent mea-
surementg8].

Our calculations are based on two differéitl potential
models, namely Bonn-BL7] and AV18[18]. Both potentials
are defined below 350 MeV nucleon laboratory energy,
which corresponds to BIN c.m. energy of 175 MeV. In the
Nd breakup process in first order théN c.m. energy avail-
able to the two-nucleon subsystem is fixed in terms of the
laboratory momentum of the final nucleon and the projectile
energy. For a projectile energy of about 200 MeV in gt
scattering process, the maximusiN c.m. energy in the two-
body subsystem is about 133 MeV. Thus, our calculations
employ theNN models in an energy regime where they are
perfectly well defined. Of course, the two potential models

PHYSICAL REVIEW (58, 054003(2003

0.65

0.30

1

exp. ——i

PW full Bonn-B
PW full AV

ex
PW full Bonn-B
PW full AV18

Bonn-

3D AV18

P i

180

PW full Bonn-B
PW full AV18§
3D Bonn-B

3D AV

exhibit differences in the description of tiNN phase shifts.
The model AV18 is one of the so-called high-precision po-
tentials, describing th&lN data base with a?/datunm~1,
whereas Bonn-B has a slightly hlghﬁ‘/datum value. Thus, FIG. 3. (Color onling The spin averaged differential cross sec-

there are on-shell differences between those two modelgy (PoldE,de [mbiMeV sp], the analyzing poweh,, and the po-
which should lead to differences in tiéd breakup observ- larization transfer coefficieri, for the (p, n) charge exchange pro-

ables. , , cess at projectile energfi,,=197 MeV and neutron laboratory

In Figs. 3 and 4 we compare the 3D calculations with PWscattering angles,=24°. The solid(short dashexline represents
based full Faddeev calculatios9] at 197 MeV proton en-  the 3D calculations for the first order term based on the AV18
ergy. We show the spin averaged differential cross sectiongonn-B) potential. The long-dashegiotted line stands for the
the analyzing power and spin transfer coefficients at twapartial wave based, full Faddeev calculations based on the AV18
angles,f,,=24° andf,,=37° together with experimental re- (Bonn-B) potential. The data are taken from REE7].
sults from Ref.[8]. The PW full Faddeev calculations uge
=5,J=31/2 for the AV18NN potential, andj=4,J=31/2 for  scattering angle becomes. For both angles, the analyzing
the Bonn-BNN potential. Since the solution of the PW full power A, shows the largest effect of rescattering for small
Faddeev equations is more involved we restrict ourselves toeutron energies, which can be expected, since interactions
a lower number of partial waves. However, the number ofbetween outgoing particles should be larger, when their rela-
partial waves is sufficient to study the importance of rescattive energy is smaller. In both caség,can only be satisfac-
tering terms in the multiple scattering series at this energytorily described when rescattering terms are taken into ac-
The first obvious difference between the two calculations isount. For the spin transfer coefficieDf at 6,,=24° the
the appearance of the final state peak in the differential crossituation is similar, rescattering effects are largest for small
section, which of course is solely due to rescattering. Furneutron energies. F@gat 6,,,=37° none of the calculations
thermore, we see that rescattering contributions have this able to capture the general shape of the data, rescattering
general tendency to push the peak of the differential crossffects are visible, but they do not affect the general shape of
section down, though the size of the effect depends on ththe curve as this is the case in the other observables shown in
angle and the potential. However, the rescattering terms dbigs. 3 and 4. From these consideration we have to conclude
not affect the position of the peak. We see that the peak ithat at a projectile energl;,,=200 MeV rescattering terms
shifted further away from the data the larger the neutrorstill give considerable contributions to the fydd breakup

-0.66 1
100 135

E, [MeV]

170
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0.22 T
— exp. +——
= PW full Bonn-B
: PW full AV18 -----
% Dol
=
.
= 010
o3
RS
C\']Uﬂﬂ
0.02 1
160
0.16
3D rel AV18 -----
<§°-0.07 o .
€XD. p——t
PW full Bonn-B
PW full AVIg -----
Bonn-B ------
3D AV1g ———
-0.30 L
70 110 150 0140 25 %
ois E, [MeV] E, MeV]
’ ' exp. ——
P full Bonn B ~ FIG. 5. (Color onling The spin averaged _dif'ferential Cross sec-
-% tion d?/dE,df [mbAMeV sn] and the analyzing powek, for the
(p,n) charge exchange process at projectile endigy=100 MeV
= o010k and neutron laboratory scattering anglg,=24° The solid(short
Q ' T dashed line gives the nonrelativistic 3D calculations for the first
order term based on the AVi8onn-B) potential. The long-dashed
(dotted line represents the 3D calculations that include the effects
of relativistic kinematics.
-0.35

80 that even alNN laboratory energies higher than 350 MeV the

agreement with data deteriorates relatively slowly. Neverthe-
less, this can lead to deficiencies in describing thé

FIG. 4. (Color onling The same as in Fig. 3, but for the spin

averaged differential cross sectiaRo/dEdd [mb/(MeV sp], the breakL_lp procc_ass ﬁ'.ab>260 MeV. . .
analyzing power, and the polarization transfer coefficieRts at At first we investigate the effect of relativistic kinematics
B =37°. on the breakup observables at a low enekyy,=100 MeV,

where it is expected to be small. In Fig. 5 we show the

amplitude and hence cannot be neglected. Due to the lack Gfferential cross section ankl at ;=100 MeV and a neu-
calculations based on the full Faddeev equations at highdfon laboratory scattering angig,=24°. In the cross section

energies, we cannot carry out corresponding studies at high&ffects are only visible in the quasi-free-scatteri@FS
energies. peak, but in general one can say that around 100 MeV rela-

tivistic effects are small, and certainly not the dominant cor-
rection to worry about.

Going to a higher energ¥,,,=197 MeV, the relativistic

In this section we study the effects of relativistic kinemat- effects increase considerably. In Figs. 6 and 7 we show the
ics in the breakup amplitude and follow the formulation de-cross section andy, and two spin transfer coefficients at
rived in Sec. lll. We also want to take full advantage of ourneutron laboratory scattering anglég,=24° and,,=37°.
3D formulation and carry out calculations at proton incidentHere the QFS peak is visibly enhanced by the use of relativ-
energies higher than 200 MeV, a regime where partial wavéstic kinematics. More importantly, its location is shifted to-
based Faddeev calculations become less competitive. Q¥ards smaller neutron energies, and is now in better agree-
course we also realize that th potentials from which our ment with the experimentally determined peak location. As
NN T matrix is obtained are strictly speaking out of their far as the spin observables are concerned, the relativistic cor-
range of validity, i.e., they do not include important deltarections show the largest effect for the higher neutron ener-
degrees of freedom. AIN laboratory energy of 350 MeV gies.
roughly corresponds to a proton incident laboratory energy A proton energy of,,=346 MeV is the next higher en-
of 260 MeV in thepd scattering process. A comparison of ergy at which the(p,n) charge exchange reaction is mea-
the NN scattering observables with the calculated ones showsured[9]. In Fig. 8 we display 3D calculations with nonrel-

C. Relativistic effects
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FIG. 6. (Color onling The spin averaged differential cross sec-  FIG. 7. (Color onling The same as in Fig. 6, but for the spin
tion d?a/dE,dd [mb/MeV sn], the analyzing poweh, and the po-  averaged differential cross sectiao/dE,d6 [mb/(MeV sp)], the
larization transfer coefficierid; for the (p, n) charge exchange pro- analyzing power,, and the polarization transfer coefficieDi at
cess at projectile energf,,=197 MeV and neutron laboratory 6,,=37°.
scattering anglé,,=24°. The solid(short dashedline gives the
nonrelativistic 3D calculations for the first order term based on theé"ig. 9 we show the differential cross sectio, and Dy at
AV18 (Bonn-B) potential. The long-dashedotted line represents Eiap=495 MeV for a neutron laboratory scattering angle
the 3D calculations that include the effects of relativistic kinemat-flp=18° together with the measurements from R0].
ics. The data are taken from RéL7]. Here we clearly see that the corrections due to relativistic

kinematics push the QFS peak towards lower neutron ener-
ativistic and relativistic kinematics for a neutron scatteringgies, and the location of our calculated peak agrees with the
angle 6,,=22°. Again we observe an increase in the QFSmeasured one. The effects on the spin observables are now
peak and a shift to lower neutron energies. Here we wouldlso quite sizable.
like to point out that there is an uncertainty in the data as far With this study we can qualitatively indicate that relativ-
as the location of the QFS peak is concerned. In the experistic effects become important when going to higher ener-
ment there is an uncertainty of the energy, at whichgte gies. However, we cannot make any definite statements,
breakup process exactly occurs. For example, due to theince we only consider relativistic kinematics. We have not
thickness of the target the proton may have lost some of itsonsidered effects resulting from boosting Rl T matrix
energy before it hits and breaks the deuteron api#i In [10] and Wigner rotations of the spiil]. Those effects in
this case, the breakup process occurs at an energy slightprinciple could counterbalance the kinematic effects. It also
different from the calculated one. The effect of relativistic remains to be seen how important rescattering effects will be
kinematics on the spin observables is clearly more proat those higher energies. Our calculations based on the first
nounced compared tB,,=197 MeV. We also calculate the order term and relativistic kinematics overestimate the differ-
breakup process & ,,=495 MeV, though here the uncer- ential cross section. That could imply that rescattering still
tainty with respect to our inpWdIN interactions is largest. In  plays an important role at those energies.
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FIG. 8. (Color onling The spin averaged differential cross sec-  FIG. 9. (Color onling The spin averaged differential cross sec-
tion dPo/dE,d6 [mb/(MeV sn], the analyzing powef,, and the po- tion d*o/dE,d¢ [mb/(MeV sn], the analyzing powes,, and the po-
larization transfer coefficier, for the (p, n) charge exchange pro- larization transfer coefficierd, for the (p, n) charge exchange pro-
cess at projectile energf,,=346 MeV and neutron laboratory cess at projectile energf,,=495 MeV and neutron laboratory
scattering angled,,=22°. The solid(short dashexline gives the  scattering anglef,,=18°. The solid(short dashedline give the
nonrelativistic 3D calculations for the first order term based on thenonrelativistic 3D calculations for the first order term based on the
AV18 (Bonn-B) potential. The long-dashedotted line represents  AV18 (Bonn-B) potential. The long-dashedotted lines represent
the 3D calculations that include the effects of relativistic kinemat-the 3D calculations that include the effects of relativistic kinemat-
ics. The data are taken from R¢®)]. ics. The data are taken from R¢20].

where the arbitraryz axis points into the direction of the
initial momenta. This leads to an intricate additional phase
We formulate and calculate tidd breakup process based factor.
on the Faddeev scheme in first order in the multiple scatter- As specific application of our new formulation we calcu-
ing expansion in a three-dimensional fashion which does ndate the (p,n) charge exchange reaction in the proton-
rely on any partial wave decomposition. The leading term fordeuteron breakup process. Here only the outgoing neutron is
the Nd breakup amplitude is derived in a representation thatletected after the breakup. Our calculations concentrate on
uses directly the momentum vectors. This representation caspin averaged differential cross sections, neutron polariza-
be connected to the momentum-helicity basis, in which weions, proton analyzing powers, and polarization transfer co-
solve for theNN T matrix in a 3D fashion. Special care has efficients at different energies.
to be taken when rotating théN T matrix elements, which First we carry out calculations of observables for the lead-
occur with arbitrarily oriented initial momenta in thdd  ing order term in theNN T matrix at energies which are
breakup amplitude, such that tNd initial relative momenta  accessible to traditional, partial wave based Faddeev calcu-
point into a fixedz direction. This is needed since two lations. The aim here is twofold. First, we need to establish
nucleon LS equation for theN T-matrix is solved in a basis the numerical accuracy and feasibility of our new formula-

VI. SUMMARY AND CONCLUSIONS
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tion. We establish both by comparing observables calculateduch as boosting of thN T matrix. It also remains to be

in both schemes at a proton incident enekgy=100 MeV,  seen how important rescattering effects will be in the higher
where we find excellent agreement between both calculagnergy regime.

tions. At E,;,=200 MeV we find some slight deviations be- ~ Summarizing, for the first order term in the multiple scat-
tween the two schemes, especially in the quasifree peak dering series in the Faddeev scheme the 3D approach has
the differential cross section. This can be identified as th@roven to be a viable alternative to the established partial
onset of a lack of convergence using the typical and feasibl&/ave ba_sed _calculauons. When entering the intermediate en-
number of partial waves in the traditional partial wave based'dY regime it may be the approach having the most promise
calculation in that particular observable. Since, however, re2f D€ing successful in the near future, due to the intrinsic
cattering still plays a role at 200 MeV, and is not yet in- limitations with respe_ct to computatlo_nal feas!blllty and ac-
cluded in our 3D approach, we cannot make a definite stat curacy faced by partial wave calculations at higher energies.

ment about the number of partial waves needed for Lis also clear that the 3.D aPpm?Chv though having a well
.- X . defined roadmap ahead, is still facing extensive development
sufficiently well converged partial wave solution.

. ) i needs. The full Faddeev equations will have to be solved,
Second, we want to investigate the importance of resca

; q v high Y with the inclusion of three-nucleon forces, which may play a
tering terms at a moderately high energy. Of course, we ne€g, e gominant role at higher energies. Furthermore, though

full Faddeev calculations here. Since those do not yet exist iy consider the effects of relativistic kinematics, we have
a 3D formulation using realistitiN potentials, we have 10 ot taken into account the corresponding dynamical effects.
resort to partial wave based full Faddeev calculations. This\ng |ast, but not least, the underlying input of any 8al-
of course limits the energy regime we can study. Thus, weylation, namely the two-nucleon force, is by far less devel-
compare our calculations &,,=197 MeV to the PW full  oped at higher energies than it is for energies below the pion
Faddeev calculations. We find that at this energy rescatteringroduction threshold.
effects are still important, and are mostly visible in the cross
section and the analyzing power. In addition, we find that the
PW full Faddeev calculations provide a reasonable descrip-
tion of the (p,n) charge exchange reaction at 200 MeV.  We would like to thank Henryk Witata and Jacek Golak
However, we also can detect one obvious deficiency in botlfior very useful discussions and providing the PW results.
schemes, at larger neutron laboratory scattering angles thghis work was performed in part under the auspices of the
QFS peak is located at slightly too high neutron energieDeutsche Akademische Austauschdienst under Contract No.
compared to the data. A/96/32258, and the U. S. Department of Energy under Con-
This leads to the next topic we investigate, namely thgract No. DE-FG02-93ER40756 with Ohio University. We
effect of relativistic kinematics in th&ld breakup reaction. thank the Computer Center of the RWTH Aach@rant No.
Here we have to employ not only relativistic energy- P039 for the use of their facilities.
momentum relations, but also need to reevaluate the Jacobi
momenta by carrying out corresponding Lorentz transforma- APPENDIX: TWO SUCCESSIVE ROTATIONS

tions to the two- and three-particle c.m. subsystems, and em- | .o appendix we evaluate the rotation of the state
ploy a relativistic description of the cross section. We comgp,@SA> as

pare our 3D calculation based on nonrelativistic kinematic
with the corresponding one based on relativistic kinematics. R , , o
Though there are no sizable effects at 100 MeV proton inci- R (P )Ip;PSA) =R(0, = 6", = " )R(¢00)[pZ;2SA).

dent energy, we find, that at 200 MeV visible effect occurs, (A1)
mainly the differential cross section. Its magnitude increases,

but most importantly, the QFS peak is shifted to the experiFirst, we give a few basic definitions and relations re-
mentally determined one using relativistic kinematics. Sinceyuired to follow the calculation. More details about rota-
our calculations are as easily carried out at 300 or 500 Me\fion can be found in, e.g., Reff13].

ACKNOWLEDGMENTS

as at 200 MeV, we perform calculations Bf,=346 MeV A general rotation operatd®(p) is defined as
and 497 MeV, where experimental data are available. We
find that at those higher energies the effects due to the rela- R(P) = R(¢0) = e W2be iyt (A2)

tivistic kinematics are considerably larger than at 200 MeV.

They are now visible not only in the cross section but also in,hare 3. 3 are thez and y components of the angular
the spin observables. Even Bj,,=500 MeV this specific 0 o8 operatod and (6, ¢) the rotation angles that
feature prevails, namely that the QFS peak is shifted to Ioweaetermine the direction db. 'i'his operator rotates the an-
neutron energies and coincides now with the experimentall ular momentum statjm) into the statepjm)
determined one. However, its magnitude is larger. With thes ’
finding we can qualitatively indicate that relativistic effects .
become increasingly important when considering tie [pjm) = R(p)|2jm) = > D}, . (B)|2jm’), (A3)
breakup reaction at higher energies. However, we have to m’

exercise some caution in the interpretation of our findings, _

since we have not considered dynamical relativistic effectswhere D'm,m(fJ) are the WignemD function defined as
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D, () =D/, (460)=(2jm'[R(P)[2jm).  (A4) coordinates’ are related to the old onesas
A rotation R(eBv) corresponds to a change of the Carte- r'=Mlapyr, (AS)
sian coordinates describing the state. The new Cartesianwhere the rotation matris(aBy) is given as

COSa cosB cosy—sSinasiny sinacosBcosy+cosasiny —sinBcosy

M(a B y)=| —cosa cosB sin y—sina cosy —sina cosBsiny+cosacosy singBsiny |. (A6)
cosa sin B sin « sin B cosp
|
Two successive rotations in momentum space ~ _ o *
P RIE")Ip) =RI(5") X [pIm) Y, (6, ¢)
Im

We denote the rotation operator in momentum space as
R (p), which is given in term of the orbital angular momen-

tum operatolL as =2 > [pl'm' )@ 'm' [RI(5)]2Im) Y6, ¢)

Im 7y
RL(P) = R (00) = g iLeteriLy?, (A7) =3 pl’'m’ )21’ |RI (57)|2Im)(zIm|p)
Im 7y
A momentum statdp) with p pointing in the direction = > |pl'm'}2'm' R (5")|p)
(6, $) can be expanded in partial waves as I’
. = 2 [pl'm')@"'m’|[g")
p) = 2 [PIM)Y((6, ), (A8) i
Im

— E |p|/mr>Y;"m,(0'r, ¢n)

where |plm) is defined to be quantized along tlzeaxis. '

The state|p) can be obtained by rotating a stdf&) as =R.(0")|pz, (A11)

follows: where we have defined a directigii to be determined by

p andp’ according to

R.(p)[p2) = RL(¢>90)% [PIM)Y|,(0, 0) 15"y = RI(5")[p). (A12)
21+1 Inserting Eq.(A9) into Eq. (Al1l) this leads to
=RU(¢00)2 [pIO) | —— o .
' & RI(F)RL(P)[p2) = RL(F")[p2). (A13)

Hence, the two successive rotatidﬂi&ﬁ’)RL(f)) applied to
the statgpz) can be replaced by the single rotatiBn(g”).
Consequently any number of successive rotations in mo-

20+ 1
=3 S |pl'mx2l mR (60)[210) ﬁ

I 1'm

21+1 mentum space can always be replaced by one rotation
|
=2 |PIm)Dg(60) 4 with the corresponding rotation angles. The angi¥s¢")
m of p” are determined by the anglég ¢) of p and(#’, ¢')
=2 [PIm)Yin(6, ¢) = p). (A9) ~ of p’ by
Im

cos#'=cosf cosd +sin dsin §'cos(p— ¢'),

Here we used the relation between the spherical harmon- (A14)
ics and the Wigneb functions,

sin @€ = - cos 6 sin ' + sin 6 cos @'cos (¢ - ¢')

\ [21+1 S
Yim(6, ¢) = ﬁD'mO(MO). (A10) +isindsin(¢-¢'), (A15)

and are obtained from the rotation matrices of the Carte-

sian coordinates, which correspond to the rotations in Eq.
Now we rotate the statp) with an inverse rotation op- (A13). Such a rotation matriM(af8y) corresponding to
eratorR (") =R/ (p")=R_(0, -¢', -¢'"). It follows that R(afBy) is given in Eq.(A6).
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T i t t i i Uty J— rn!
wo successn./e rotations In .Spln s.pace ) X/S\rA(¢ P O) = E Dﬁ;\r((ﬁ P O)DEA(qbﬁO) (A23)
We denote the rotation operator in spin spaceRg$), N

which is given in term of the total spin operatSras Therefore, instead of comparidg’SA), with [5"SA), we

Re(p) = Re(p00) = iS00 (A1)  compareDy,,(¢"6"0) with X3,,(4"6"0), since these are
known functions. We have two spin casgs0 andS=1.

The rotation identity given in EJA13) may notapply in oy 5= the spin state is rotationally invariant and thus we
spin space. Therefore, we evaluate two successive rotations, , immediately get

in spin space, independent of the evaluation in momentum

space. We compare the rotated spin state or the helicity state x80(¢"9"0) = D80(¢"9"0) =1 (A24)
[6"SA), with |§7SA), given by .
and correspondingly
|6"SA), = Rg(p")|ZSA), (A17) . » A
|3"00), = |3"00), = |200). (A25)
|6"SA ) = RYB")RS(P)[2SA). (A18)  For S=1 we make use of a symmetry relation for the

It should be pointed out that here the relation betweerYVignerD functions given as
(6", 4", (0',¢'), and (6, ¢) given in Eqgs.(Al4) and j* _ I
(A15) is still valid, since transformations of the Cartesian Dy m(@By) = (=)" mD—m',—m(O‘IBV)1 (A26)
coordinates are the same in both momentum space ar]aﬁlowing to leave out the case with initial helicity=-1

spin space.

Both stategp”SA), and|§"SA), are eigenstates of the he-
licity operatorS-p” with eigenvalueA, as can be shown as
follows:

and consider only six cases with'=1,0, -1 andA=1, 0.
The WignerD function DX,A(MO) is given as

At/ o oA .. 1+cosé _.,sinf . 1-cosd
S-P"|p"SA), = Rg(p")S - 2ZRYP")R<(")[2SA) e — - 5 e
1 . 5|5 A
=Rs(B")S - 2[250) D% 560 sin @ , sin@
= "\ Z = — = Ccos -
ARg(P")|2SA) (¢60) 2 72
= A|g"SA),, (A19) ei¢1_0080 ei¢3i” 6 ,l+cosd
7 A 5 A 7 5 5 €
S p"|p"SA) = RYP")R(P)S - 2RUP)RS(P") 2 V2 2
XRL(P")Rs(P)[2SA) (A27)
=RYP")RLP)S - 2|2SA) For A=0 it follows that
= ARYP")R(p)[2SA) = Alg"SA) L SO
(A20) X ¢7070) = - €T == =Dyl #'00),  (A28)

Moreover, because of the unitarity transformations in Egs.
(A17) and (A18) the two states have the same norm and Xgo(gb”e”O) =cosf'= Déo(d>”0"0), (A29)
can at most differ by a phase factor.

The helicity stategg”SA), and [g"SA), are expanded in Can

. A - aSin 6
the spin statefSA) as X, (¢"0"0) =¥ 5" D1,((¢"6"0),  (A30)
|B"SA) = Re(")[2SA) = 3 [28A")D3,, (46"0), !
A and thus,
(A21) 1 Uall 1 Ul
Xyo(@"60"0) =Dy ,o(¢"60"0) (A31)
6"SA )y = RYB")Rs(P)|2SA) and correspondingly
=2 [2SA")(2SA'[R{(¢' 670)[2SN 16710, = [5710),. (A32)
A'N
X (2SNR( $00)|2SA) For A=1 we obtain
= E |ZSA’>% DﬁA,(g{)’g’O)DﬁA((f)m) Xil(qS”H”O) — ;{(1 +c0s6 cos#')cos(d—¢')
A/
— 5 ! S U ! i
= AE |2SA)XS £ (676°0), (A22) +sin 0 sin 0’}—%(cose+ cosd’)
where X sin(¢p-¢'), (A33)

054003-18



Nd BREAKUP PROCESS IN LEADING ORDER IN A. PHYSICAL REVIEW C 68, 054003(2003

1 1 " oray) = ol QA 1 11 A

X51(¢"6"0) = —={~ cos 6 sin ¢/ cos(¢ = ¢') + sin ¢ cos &’ Xua(#1070) =D\ (#7070), - (A36)
V2 where() depends on the set of angles, 6, ¢’, ¢’). Noting
+isin #'sin (¢ - ¢')}, (A34) that Dg,(#"6"0) is real the phasé€) can be given through

its tangential as
_Im{Xg(¢"6"0)}

tan 0= 1 11 1
Xt (476"0) = 1{(1 —cosf cos')cos(p— ¢') ReXou#"0"0)}
e 2 ~ sin @'sin (¢ — ¢')
U , " —cos6sin @'cos(¢p—¢')+sin 6 cose
—-sin @ sin 6}—§(cosa—cosa) (A37)
X sin(p—¢'). (A35)  The() calculated in Eq(A37) is also valid for other com-

binations of A’ and A, since(} is independent of\’ and
A. After all these evaluations we summarize that
Hence, for A=1 apparentlyxi,l(cﬁ”ﬁ”O) differs from RLBR4(P)[2SA) = €24R(5")[2SA), (A38)
D}\,l(qS”a”O), and correspondinglyg”11), from |g"11),, by <
a phase factor. Now the difference between Eqgs. S Ly A ~S
(A28)—(A30) and Eqs.(A33)—(A35) is connected to the , NESDNA'W’ 6"0)Dx (60)
value of A. Therefore, the phase factor must dependion ¢t = D% (5870 : (A39)
and is independent of’. The latter can be understood as aa(é )
we see that there is na’ dependence in Eq¢A17) and  \we have restored the spin notati@ since Eqs.(A38)
(A18). In addition the phase factor also depends on the seind(A39) are general and hence apply to arbitrary sgin

of angles(¢, 6, ¢, §'). Thus we write including S=0.
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