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ABSTRACT

Recent experiments using Terawatt lasers to accelerate protons deposited on thin wire targets are modelled

with a new type of gridless plasma simulation code. In contrast to conventional mesh-based methods, this

technique offers a unique capability in emulating the complex geometry and open-ended boundary conditions

characteristic of contemporary experimental conditions. The simulations shed new light on a number of

experimentally observed features, including the hitherto unexplained ‘double-disc’ emission pattern of the

MeV protons accelerated away from the wire. These discs appear to be formed by the combined action of

target normal sheath acceleration and resistive hot electron transport effects.

1. Introduction

Since the first experiments measuring ion emission from multi-Terawatt laser-solid interactions

[1, 2], laser-induced acceleration of MeV protons (fast ions) has become one of the most contentious

issues in the field. Such protons originate from water vapour or other impurities adsorbed onto

the target surface prior to laser irradiation, and by virtue of their lower mass, are preferentially

accelerated over heavier constituent plasma ions when the laser creates a charge separation either

inside or outside the target. The ability to create multi-MeV protons in a relatively cheap and

compact manner has generated widespread interest because of its potential in a number of emerging

fields, such as hadron therapy [3], novel neutron sources [4] and advanced fusion concepts [5].

Experimental campaigns begun by the Livermore and Imperial College groups some four years ago

resulted in two apparently irreconcilable pictures of proton acceleration [6, 7, 8].

The first interpretation, proposed by the Livermore team [6, 9], supposes that protons will be pri-

marily accelerated from the rear surface of thin (1–100 µm ) foil targets by the space charge set
up by the laser-generated hot electron cloud. This intuitive scenario, dubbed ‘target normal sheath

acceleration’, or TNSA, has since been strongly supported by 2- and 3-dimensional particle-in-cell

(PIC) simulations performed by various authors over the last 3 years [9, 10, 11]. These simulations,

based on a self-consistent solution of the Lorentz-Maxwell equations for the electromagnetic fields

and plasma electrons and ions, all show an efficient initial transfer of laser energy to MeV electrons,

which proceed virtually unhindered through the target and beyond. A large charge separation is thus

rapidly created on the rear side, which then tugs ions away from this surface.

An alternative school of thought argues that most of energetic protons in high intensity interactions

must come from the front side of the target, a viewpoint supported by experiments performed by the

Imperial College group at the Rutherford-Appleton Laboratory [12, 13, 14] and by the Michigan

group [15]. The details of the mechanism for the ‘front-side’ scenario are still unclear however:

ponderomotively driven charge separation and the associated ion shock formation appears – ac-
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cording to PIC simulations – to be insufficient by itself to account for the high number, energies

and angular distribution of protons observed.

It is generally acknowledged that both mechanisms probably play a role: the real bone of contention

is which one dominates for a particular laser-target configuration. In order to probe the physics of

proton acceleration further, recent campaigns by the ICL and Darmstadt groups have been carried

out using different target geometries [16, 17]. In particular, a series of experiments with the VUL-

CAN laser using wire targets has added fuel to this debate, as well as throwing up new questions

concerning the role of ‘spectator’ targets which appear to radically alter the field distribution in the

vicinity of the laser-irradiated region [18].

The purpose of this paper is to report on simulations of ion acceleration from wire targets using the

new parallel tree code PEPC (Pretty Efficient Parallel Coulomb-solver). Like the Particle-in-Cell

method, this technique also follows the motion of charged particles in self-consistent electric (and in

principle magnetic) fields. In contrast to PIC, however, the tree code computes inter-particle poten-

tials and forces directly rather than by employing a grid to mediate the fields via charge and current

densities. As will become apparent shortly, this mesh-free, Lagrangian approach lends itself rather

well to the kind of open-ended, complex geometry typical of contemporary high intensity laser-

matter interactions. After an introductory description of the tree-code-based model in Sections 2–4,

simulations of proton acceleration from laser-irradiated wire targets are presented for parameters

close to conditions in the recent ICL-RAL experiments.

2. Finite-Size Particle Kinetics with a parallel tree code

The hierarchical tree method on which PEPC is based actually has more in common with molecular

dynamics than with particle-in-cell simulation. Briefly, this technique makes systematic use of

multipole expansions to reduce the computational effort expended in the force-summation to a time

O(N log N), which for large systems of charges (N > 104), leads to substantial speed-ups over

the conventional O(N2) algorithm, independently of machine architecture. The technical details of
the parallel algorithm used here have been documented elsewhere [19], and we will concentrate on

the main components of the physical model in what follows. An earlier plasma tree code (in many

respects a sequential forerunner to PEPC) has previously been used to perform microscopic MD

simulations of dense, strongly coupled plasmas [20].

In the laser-plasma context of interest here, we use the tree algorithm to model ‘macroscopic’

plasma behaviour in the same spirit as PIC or fluid simulation. This model is based on the ‘Finite-

Size-Particle’ (FSP) approach, in which point particles are replaced by spherical clouds, and are

allowed to interpenetrate or cross each other. A detailed theoretical basis for this approach was

actually laid down over 30 years ago by Langdon, Okuda and Birdsall [21, 22]. An important

outcome of their work was to show that the collisionality of FSP plasmas is reduced by orders of

magnitude compared to a plasma comprising point particles, so that the plasma parameter nλ3

D is

effectively replaced by nε3, where n, λD are the number density and Debye length respectively,

and ε is a measure of the particle size, or cloud radius. This property is implicitly and deliberately
exploited in PIC codes, where the smoothing arises automatically by the imposition of a spatial

grid, with the result that the above parameters are typically restricted to values: ε ≃ ∆x ≃ λD.

Henceforth, we will use the term FSP to mean gridless particle simulation.

The pure FSP method has two immediate advantages over PIC in kinetic plasma simulation: i)

collisions are in principle included naturally through the choice of ε/a, where a = n−1/3 is the

average interparticle spacing, and do not need to be patched back into the code in an ad hoc (and

usually expensive) fashion [23]; ii) there are no geometrical restrictions on the simulation region:

fast (laser-accelerated) particles do not have to be artifically absorbed or recycled, and may fly as far

as they wish away from the interaction region. This does not preclude the application of periodic or
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reflective boundary conditions for special geometries: a fully periodic system for strongly coupled

plasmas was developed, for example, in Ref. [24].

The drawback of the model is that it is, for the time-being, purely electrostatic: induced magnetic

fields are neglected and no electromagnetic wave propagation is supported. At first sight, this

may seem too simplistic to describe the kind of highly relativistic, nonlinear phenomena which

prevail in high-energy-density laser-matter interactions. As we shall see, however, this ansatz does

in fact allow us to capture the salient features of ion acceleration, including important collisional

physics which has evidently been missing from the vast majority of PIC simulations of laser-solid

interactions to date.

We now proceed with a ‘formal’ description of the electrostatic FSP model as currently imple-

mented in PEPC. The choice of units is somewhat subtle for macroscopic mesh-free plasma simu-

lation, and contrasts with the microscopic ‘Debye’ system used, for example in Ref.[20]. The base

normalizations for time, space, velocity, charge and mass respectively are as follows:

t = ω−1

p t̃,

v = cṽ,

r = cω−1

p r̃

q = Npeq̃,

m = Npmem̃. (1)

The constant Np represents the number of physical charges contained within a simulation (macro-

) particle, to be determined through the equation of motion, which for a given particle i with charge
qi and massmi is given (in cgs units) by:

mi
dui

dt
= qiEj

= qi

∑

i6=j

qjrij

r3
ij

, (2)

where rij = ri − rj is the separation between particles i and j, and ui = γvi is its proper

velocity; γ = (1+ | u |2 /c2)1/2 the relativistic factor. In a tree code, the O(N) sum over all
other particles is replaced by a sum over multipole expansions (expanded here up to quadrupole) of

groups of particles, whose size increases with distance from particle i. The number of terms in this
sum is O(log N), which even after the additional overhead in computing the multipoles, results in
a substantial saving in effort for large N .

Rewriting Eq. 2 in terms of the normalized variables (1), we find:

m̃i
dũi

dt
=

Npe
2ωp

mec3
q̃i

∑

i6=j

q̃j r̃ij

r̃3
ij

,

which, after adding an external field Ep, and making use of the plasma frequency definition, ω2
p =

4πe2ne/me for electron density ne, reduces to:

m̃i
dũi

dt
=

1

3
q̃i

∑

i6=j

q̃j r̃ij

r̃3
ij

+ q̃iE
p(ri), (3)

provided we take:

Np =
4π

3
ne

(

c

ωp

)3

. (4)

Physically, the constant Np is just the number of electrons in a sphere with radius c/ωp. Since it

has been normalized out, we do not actually need to know Np in order to carry out a simulation,

although it does provide a convenient conversion factor.
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As in classical MD simulation, we cannot use the pure Coulomb law for point charges because of

the finite timestep, which will cause some particles to experience large, stochastic jumps in their

acceleration, eventually destroying the energy conservation. We therefore modify the force-law in

Eq. 2 to include a softening parameter ε, so that the electric field looks like:

E(r) =
qr

(r2 + ε2)3/2
. (5)

The effect of the softening parameter is to introduce a cutoff into the potential, and to ensure that

E(r) → 0 as r → 0, which greatly assists numerical stability in the time-integration (or particle-
pusher) scheme. Physically, we no longer have point charges, but rather charge clouds with a

smooth charge density. It is instructive to compute the latter by applying Gauss’ law to (5), giving:

ρ(r) =
3qε2

4π(r2 + ε2)5/2
. (6)

Using the same normalisations as before, and taking ρ = en0ρ̃, where n0 is some number density

to be determined, we find:

n0
˜ρ(r̃) = ne

q̃ε̃2

(r̃2 + ε̃2)5/2
(7)

To simplify this expression, we choose n0 = ne, or ñe = 1. Charge assignment is then straightfor-
ward: the total charge contained within a cuboid volume V = xL × yL × zL (in normalized units)

is

Q =
∑

i

qi = ρ̃0V

= NeQs,

where Ne is the total number of simulation electrons and Qs is the macro-charge carried by them.

Since the initial density ρ̃0 = −ñe = −1, we simply have

Qs = −
V

Ne
. (8)

3. Target preparation (particle loading)

Assigning chargesQs and−QsZ to the electrons and ions respectively, and massesM
e
s = |Qs|,M

i
s =

A|Qs|, whereZ andA are the atomic number and mass, sets up a macroscopic plasma system whose
internal dynamics is governed solely by Equation 3. Before we can proceed, however, we must pay

some attention to its initial spatial and thermal configuration. Whereas a PIC code can be fairly

easily initialised through a ‘quiet start’ – an orderly placement of particles in phase space – the FSP

model suffers the same kind of pitfalls encountered in classical MD simulation, such as: i) strong

initial heating resulting from the system being out of equilibrium at t = 0, and/or ii) persistent drift
currents and oscillations due to localised random concentrations of ion charge.

In the present work, these problems are resolved by a two-step ‘target preparation’ phase. First,

ions are forced into a quasi-crystalline structure bounded by the target geometry (which could be,

for example: cuboid, wedge-shaped or cylindrical). This is efficiently achieved by allowing the

ions to interact via an artificial Lennard-Jones-type potential (the Coulomb interaction having been

switched off), thus collectively seeking out a spatial configuration such that the mean distance to

each nearest-neighbor is maximised [25]. The wire targets of the present investigation are con-

structed from cylinders of length H and radius R, as depicted in Fig.1. The laser is focussed either
at the midpoint along the z-axis or with some offset z0.
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Figure 1: Geometry for laser-wire simulations.

Next, electrons are placed close to the ions (assuming Z = 1) with a velocity randomly selected
from a Maxwellian distribution with temperature Te. The whole system is then allowed to relax

with the Coulomb force-law reinstated and with the additional thermodynamic constraint that Te =
const. [20]. This allows the system to seek out its own minimum potential energy while maintaining

the temperature desired for the actual simulation.

The end result, arrived at after a few plasma periods, is a configuration with well-defined boundaries,

quasi-uniform initial density and minimum potential energy. The same potential energy UP can also

be reached by forcing total energy conservation (UP + UK ), but only at the expense of increasing

the electron temperature to some unpredictable value≫ Te = 100 eV , as demonstrated in Fig.2a).
It is important to note that unlike in conventional explicit PIC codes, the FSP model does not suffer
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Figure 2: Relaxation of a cubic plasma consisting of 10000 electrons and ions with a) the total energy UK +
UP conserved, and b) with UK held constant (Te = 100eV ) via a heat-bath correction to the
equation of motion up to ωpt=20, and thereafter with the total energy conserved.

from numerical heating associated with the grid instability (after all, there is no grid here!). The

initial heating seen in Fig.2a) is physical, not numerical: the total energy (central line) is conserved

– relative to the kinetic or potential energy values – to better than 1%.

The temperature-clamped system (ωpt = 0 → 20) in Fig.2b) remains in thermal equilibrium when
allowed to evolve in the absence of external fields. Note that in this case the potential energy ends

up over 8 times larger than the kinetic energy (ωpt = 20 → 40), a situation normally associated
with strongly coupled plasmas. For a charge-cloud plasma, however, the relevant parameter is

Nc = 4π/3(ε/a)3, rather thanND = 4π/3(λD/a)3, where a is the interparticle spacing. Although
we still have to take some care over the choice of these parameters, the FSP model provides an

effective means of modelling plasmas with finite, variable collisionality.
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4. Laser model

Because wave propagation within the plasma is not yet supported by this model, the laser is in-

corporated by a ponderomotive source term, phase-matched to the instantaneous critical density

surface at the plasma edge – Fig.3. The appropriate amplitude and phase of the standing wave set
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Figure 3: Ponderomotive laser model. A standingwave solution for the laser is applied at the plasma-vacuum
interface, giving rise to the intensity pattern E2

z (dotted curve) and a ponderomotive force (solid

curve).

up at the interface x = xc is determined by the solution of the Helmholtz equation for a normally

incident, s-polarized plane wave on a step profile. Assuming zero absorption, this solution yields

the following electric field:

Ez = 2EL cos ωt











sin(kx′ + φ), x′ < 0

sin φ exp(−x′/ls), x′ ≥ 0
(9)

where tan φ = −kls, x
′ = x − xc and ls = c/ωp is the collisionless skin depth. This field is

assumed to maintain the above time dependence ∼ cos ωt, which, after dropping the prime from
the variable x (henceforth taken relative to the vacuum-plasma boundary) leads to the following
expression for the x-component of the v × B force:

fp
x = vzBy = −Ez

∂Ez

∂x

= 2E2

L sin2 ωt















k sin[2(kx′ + φ)], x′ < 0

−
2

ls
sin2 φ exp(−2x′/ls), x′ ≥ 0

(10)

Note that unlike Ez , the ponderomotive force changes sign with x but not t: here it comprises an
oscillating component at 2ω plus a DC component (the actual ponderomotive part), both of which
always point in either the positive or negative x−direction, as depicted in Fig. 3.

To make this laser model viable for relativistic interactions, it needs two further modifications: a

correction for large quiver amplitudes, a0 = eEL/mωc > 1, and a radial dependence to allow for
a finite focal spot. The expression used in the code therefore takes on the following form:

fp = −∇γ,

where γ =

(

1 +
Ψ

2

)1/2

,
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Ψ = 4a2

0X
2(x)R(r)T (t),

(11)

X(x) =











sin χ, x < 0

sin φ exp(−x), x ≥ 0

R(r) =















cos2

(

πr

4σ

)

, r ≤ 2σ

0, r > 2σ

T (t) = sin2

(

ω

ωp
t

)

. (12)

The above expressions are written in terms of normalized variables, hence the skin depth, l̃s = 1.
For readability, we have retained an explicit frequency ratio ω

ωp
, so that the phase factors become:

φ = − tan−1( ω
ωp

), χ = ω
ωp

x + φ. The radial coordinate r = (y2 + z2)1/2 is taken relative to the

center of the focal spot. The latter has a sin2 form rather than a Gaussian one in order to create a

sharp radial cutoff at 2σ (σ is the FWHM). This is is found to give a more physically reasonable
modelling of profile deformation, avoiding penetration of the low-intensity wings in the overdense

plasma, which would tend to occur for a Gaussian focal spot.

The longitudinal and radial field components are finally given by:

Ep
x =

∂γ

∂x
=

a2
0

γ
R(r)T (t)















ω

ωp
sin 2χ, x < 0

−2 sin2 φ exp(−2x), x ≥ 0

Ep
y =

∂γ

∂y
=

a2
0

γ
T (t)X2(x)















−
πy

4σr
sin2 θ, r < 2σ

0, r ≥ 2σ

where θ = πr/4σ.

This obviously simplistic model cannot hope to match the rich array of physical phenomena accessi-

ble through a full solution of Maxwell’s equations. Nonetheless, when combined with a rudimentary

density-tracking algorithm to monitor the position of the critical surface, it does serve rather well in

reproducing some of the main features of hot electron generation and pondermotive ion dynamics.

We illustrate this with a test problem in slab geometry, namely collisionless shock-formation through

pressure imbalance: a hole-boring simulation. Balancing continuity and momentum at the critical

surface (laser reflection point) gives the well-known formula for the recession velocity [26, 27]:

uh

c
=

(

Zme

mi

nc

ne

2 − η

4
a2

0 cos θ

)1/2

, (13)

where a0 is the normalised laser amplitude or quiver velocity, η is the absorption fraction of laser
energy coupled to the plasma and θ is the angle of incidence.

A simulation to verify this behaviour was set up using a plasma block with dimensions (60 c/ωp ×
150 c/ωp × 150 c/ωp) and initial electron and ion temperatures of Te = 5 keV and Ti = 0 respec-
tively. The other simulation parameters were: a0 = 2.7,mi/Zme = 1836, η = θ = 0, ne/nc = 4.
A total of 1.44 × 106 particles were used with effective size ε = 2 and average (ion) spacing
a = 0.23, giving a smear factor Nc = 4π/3(ε/a)3 = 2700, placing the simulation well into the
collisionless limit. Figure 4 shows successive lineouts of the ion density along the laser axis, from

which we deduce a hole-boring velocity uh/c = ∆xc/∆t = 15/700 ≃ 0.022. This is in good
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agreement with the theoretical value given by (13) of uh/c = 0.02, giving us some confidence in
the ponderomotive laser model described above.
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Figure 4: Ion density profile sequence along laser axis as a result of ponderomotive laser pressure.

5. Wire simulations

The laser-wire simulations were set up with a quasi-neutral plasma with ni = ne = 4nc and initial

electron and ion temperatures Te = 200 eV − 1 keV and Ti = 0 respectively, configured in a
cylinder with radius R ≃ 1 − 4 µm and height H ≃ 10 − 16 µm , as depicted in Fig. 1. Up to
3.2 × 106 simulation particles were used, with a mass ratio mi/me = 1836 and ion charge state
Z = 1. The laser wavelength is assumed to be 1 µm the spot size is 0.5–1 µm FWHM, or 12–
24c/ωp generally chosen so that the focal spot just fits within the wire diameter (25c/ωp ). The

pulse is turned on over 5 laser cycles and then kept at constant intensity for around 300 fs, or until

the wire is burned through, at which point the standing wave ansatz is no longer reasonable. These

parameters are still some way short of the experimental conditions, in which wires with diameters

of 20 µm were irradiated by a 1 ps laser focused to 20 µm. The total laser energy converted
into hot electrons is therefore 100-1000 times less in the simulations than in the experiment, so

that we concentrate on identifying trends in the interaction behaviour rather than attempting a 1:1

quantitative comparison.

Scaling up the simulations is non trivial because the statistics deteriorate rapidly: doubling the wire

radius alone results in a 4× larger plasma volume V = πR2H , and therefore requires 4× the
number of particles to maintain the same particle macro-charge Qs (keeping ne/nc constant) and

inter-particle spacing (or collisionality, unless ε is adjusted as well). These parameters determine the
maximum timestep permitted for numerical stability and hence the total simulation time required.

A ‘minimal’ simulation with Ne + Ni = 1.44 × 106 particles took 50 hours on 16 CPUs of the

Jülich IBM p690+ Regatta. The largest simulation considered in the present work, a 4µ× 16µ wire
with 3.2 × 106 particles, took over 100 hours on 32 CPUs. For convenience we include a summary

of the simulations referred to here in Table 1.

We begin our study by examining some general aspects of the laser-wire interaction for Run C; the

2 µm (50 c/ωp )-radius wire in the table. The large-scale electron and ion dynamics can be traced in

Fig.5, which shows a sequence of ion density slices in the x− z plane while the laser is incident. A
number of features in a) and b) are immediately apparent: the strong bow-shock structure resulting

from the ponderomotive push of the laser; the characteristic low-density ion blowoff back towards

the laser; the hot-electron current into the target, and ion layers starting to peel off the rear-side
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RUN Dimensions ne/nc Te N Nc ∆t I19 τL σL

# R × H(c/ωp) (keV) /106 (ω−1

p ) (ω−1

p ) (c/ωp)

A 12 x 120 4 0.2 1.44 2 0.4 1 900 6

B 12 x 120 4 0.2 1.44 2 0.4 5 700 6

C 25 x 200 4 1 3.2 13 0.2 5 780 12

D 50x 200 4 1 3.2 125 0.2 5 1450 12

E 25 x 200 10 0.2 1.44 2 0.4 5 900 6

Table 1: Summary of simulation parameters: Te is the initial electron temperature; Nc the particle ‘smear

factor’ controlling the collisionality; I19 the laser irradiance Iλ2 expressed in 1019 Wcm−2µm2.

due to hot electrons circulating behind and around the wire. This last effect is the familiar target-

normal sheath acceleration (TNSA) mechanism, but in cylindrical geometry, ultimately leading to

a disc-like fast ion emission.

a) b)

c)

Figure 5: Time-sequence of ion density isovolume ni/nc ≥ 0.25 and electron current je (arrows) for a 1/4

wire-section sliced along the laser and wire axes respectively – Run C. Times shown are a) 240/ωp,

b) 720/ωp , towards the end of the laser pulse, and c) 1800/ωp. The laser is incident from the left.

From Fig.5 one might conclude that rear-surface protons will dominate the emission spectrum here,

yet this is only part of the picture. Inspection of the ion phase space (px − x) for Run C in Fig.6a)
indicates that front-side ions are also accelerated significantly via the ponderomotive shock, some

of which have already emerged from the rear surface (at x = 50) as a beamlet in the forward
direction. The onset of a double-disc structure is apparent in the pz −x plot of Fig.6b) : the TNSA-
ions (x > 100) are beginning to fork at an angle of 5–10o to the laser axis. At this point these
ions have energies of > 6 MeV, and are still being accelerated. Also evident from Fig.6b) are the
significant blowoff components at pz ≃ ±0.05mic from the wire tips, reflecting the fact that the
hot electrons have formed a large plume around the wire. Indeed, the electron phase space shows

that this plume extends more-or-less symmetrically with a radius of ∼ 1200 c/ωp , or 50 times the

initial wire radius. This corresponds to an effective simulation volume of almost 107 µm3 - a feat

which would be difficult to match with a grid-based particle code.

The far-field structure of the ion emission in a more appropriate form for comparison with exper-
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Figure 6: Ion phase space at the end of Run C in the laser direction (x-axis): a) longitudinal and b) vertical
(pz - along wire axis) momentum components. The wire is initially located between x = 0 and
x = 50.

imental measurements is shown in Fig.7. Because the emission pattern in the y − z plane is not
yet fully developed in Run C (this would require another 500 fs or so), we resort to a predictive

diagnostic; namely, the angular momentum spread in the forward and backward directions. In other

words, we compute the ion distribution f(α, β), where α = tan−1(py/px) and β = tan−1(pz/px).
This is not quite the same thing as placing a virtual detector plate behind the wire, because the

ions may still be undergoing acceleration – particularly in the y− and z− directions due to mutual
repulsion – however it does offer an early indication of the emission pattern. In Fig.7a) are shown

only the rear-side ions with energies > 1 MeV; the front-side ions, which initially form a radially
symmetric beamlet with ∼ 10o spread, have been filtered out here. In b) the ion blowoff back

towards the laser is shown, which, as we see, also exhibits a stripe-like emission pattern. These

features are consistent with experimental data from the laser-wire experiments performed at RAL

[18, 28], where emission was also observed over a large range of angles.

Figure 7: Angular MeV ion emission at in a) forward and b) backward directions.

To get a feel for how these results scale with laser and target parameters, and to make a connec-

tion with the PIC simulations in Refs.([9]-[11]), Table 2 provides a summary of the energy balance

statistics for the runs listed in Table 1.

Although this sample of the available parameter space is too small to draw definitive conclusions,

some general trends are worth pointing out. First, the maximum ion energy Umax
i is clearly corre-

lated to the laser intensity (or Iλ2 ) rather than the total energy. The lower value for the 4 µm wire
reflects the fact that most of the absorbed energy is either still carried by hot electrons, or has gone

into heating a larger bulk of wire material at this time. This is in contrast to the 1 µm wires, for
which even after 700 ω−1

p (200 fs), around 3× as much energy has been transferred to the ions than
is carried by hot electrons.
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RUN Dimensions I19 Laser energy Ue
a U i

a Total absorption Th Umax
i Uave

i

# R × H( µm ) (mJ) (mJ) (mJ) (%) (MeV) (MeV) (MeV)

A 1x10 1 19 2.1 6.6 46 0.29 2.3 0.8

B 1x10 5 80 13 31 55 1.0 9 2.5

C 2x16 5 314 24 17 39 0.8 8 1.5

D 4x16 5 600 400 120 80 0.7 6 1

E 0.6 x 6 1 21 1.5 4.8 30 0.33 2.5 1

Table 2: Energy balance for the runs listed in Table 1. The wire dimensions are expressed in microns to aid
identification. Ua

e and Ua
i are the total energies absorbed by electrons and ions respectively at the

end of the run; Umax
i is the maximum ion energy; Uave

i the median ion energy (peak in spectrum).

The reason for this enhanced transfer efficiency is not clear at present. Normally, one would expect

a smaller-radius wire to favour the TNSA mechanism because the hot electrons have less material

to pass through. However, runs A, B and E have a far higher collisionality than C and D, implying a

lower mean-free-path for the cold electrons. This in turn leads to inhibition of hot electron transport

[29] and correspondingly more pronounced front-side ion acceleration. This can be clearly observed

in the ion phase-space of run B in Fig. 8, which shows the front-side ions emerging from the rear

side with more than twice the energy than the TNSA-accelerated ions.
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Figure 8: Ion phase space for the 1 µmwire in Run B at times a) t = 600 and b) t = 1080 showing enhanced
front-side ion acceleration. The wire is initially located between x = 0 and x = 25.

A detailed analysis of the physics behind this effect will be presented elsewhere [30]: for the time-

being, we compare the ion dynamics in the 1 µm -radius wire with that observed in Fig. 5 for the
2 µmwire of Run C. As before, we show a sequence of ion density isovolumes, but this time consist-
ing of a 1/2-wire vertical slice – Fig. 9. Superimposed on these plots are slices of the instantaneous

electron temperature in MeV, showing that while the laser is incident, the hottest electrons are ac-

tually confined to the shock region, yet there is also a strong circulation of hot electrons around the

wire.

The most striking feature of this simulation is that the entire mid-section of the wire is pushed

out by the laser: the beamlet visible in Fig. 9d) has detached itself completely from the wire and

continues to propagate away, spreading as it does so. This is reminiscent of 3D PIC simulations

double-layer targets in which a proton beam was created from the low-Z coating on the rear-side
[31]. By contrast, the main thrust in this case comes unmistakably from the target frontside, even

though the beamlet comprises ions which originate from the across the whole wire.

6. Discussion and Conclusion

The simulations presented here demonstrate that high-intensity laser-wire interactions can be effec-

tively modelled with a 3D electrostatic tree code, despite simplifications to the absorption physics

and the neglect of self-generated magnetic fields. The disc-like ion emission pattern appears to
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a) b)

c) d)

Figure 9: Time-sequence of ion density isovolume ni/nc ≥ 0.25 and electron temperature Te slice in plane

of laser incidence for a 1/2 wire-section sliced along the wire z-axis – Run B. Times shown are a)

200/ωp , b) 400/ωp , c) 600/ωp and d) 800/ωp .

originate initially from the cylindrically symmetric charge separation caused by hot electrons cir-

culating around the wire. However, it is not yet clear from the present analysis why two discs (or

a double-stripe in the far-field image) emerge, both in forward and backward directions, as in the

RAL experiments. One possible explanation is that a large number of hot electrons tend to arc back

towards the wire (which gets positively charged during laser irradiation) thus setting up a return

current along the wire (z) axis from the tips to the focus. Ions exiting the wire surface will therefore

Figure 10: Electron circulation along the wire axis. The arrow length is proportional to the electron momen-
tum.

be pulled at a slight angle to the target normal, in the ±z-direction for ions above and below the
laser focal plane respectively.

Return current effects also appear to be responsible for the development of disc-like emission in the

small-radius wire simulations. In Run B for example, radial components develop in the aftermath

of the burn-through phase, albeit at somewhat lower energies (0.5-1.5 MeV) in this case. Whether

12



this effect persists as the wire radius and laser energy is scaled up will be addressed by future work.
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