001     33894
005     20190625111728.0
024 7 _ |2 DOI
|a 10.1016/j.image.2005.03.005
024 7 _ |2 WOS
|a WOS:000230258500004
024 7 _ |a altmetric:21810844
|2 altmetric
037 _ _ |a PreJuSER-33894
041 _ _ |a eng
082 _ _ |a 004
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
100 1 _ |a Scharr, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)129394
245 _ _ |a Accurate optical flow in noisy image sequences using flow adapted anisotropic diffusion
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2005
300 _ _ |a 537 - 553
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Signal Processing: Image Communication
|x 0923-5965
|0 14262
|y 6
|v 20
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In this paper, we combine 3D anisotropic diffusion and motion estimation for image denoising and improvement of motion estimation. We compare different continuous isotropic nonlinear and anisotropic diffusion processes, which can be found in literature, with a process especially designed for image sequence denoising for motion estimation. All of these processes initially improve motion estimation due to reduction of noise and high frequencies. But while all the well known processes rapidly destroy or hallucinate motion information, the process brought forward here shows considerably less information loss or violation even at motion boundaries. We show the superior behavior of this process. Further we compare the performance of a standard finite difference diffusion scheme with several schemes using derivative filters optimized for rotation invariance. Using the discrete scheme with least smoothing artifacts we demonstrate the denoising capabilities of this approach. We exploit the motion estimation to derive an automatic stopping criterion. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a motion estimation
653 2 0 |2 Author
|a noise removal
653 2 0 |2 Author
|a high accuracy
700 1 _ |a Spies, H.
|b 1
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.image.2005.03.005
|g Vol. 20, p. 537 - 553
|p 537 - 553
|q 20<537 - 553
|0 PERI:(DE-600)1499759-9
|t Signal processing: image communication
|v 20
|y 2005
|x 0923-5965
856 7 _ |u http://dx.doi.org/10.1016/j.image.2005.03.005
909 C O |o oai:juser.fz-juelich.de:33894
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 0
970 _ _ |a VDB:(DE-Juel1)38829
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21