% IMPORTANT: The following is UTF-8 encoded. This means that in the presence % of non-ASCII characters, it will not work with BibTeX 0.99 or older. % Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or % “biber”. @ARTICLE{Platt:34288, author = {Platt, U. and Alicke, B. and Dubois, R. and Geyer, A. and Hofzumahaus, A. and Holland, F. and Martinez, M. and Mihelcic, D. and Klüpfel, T. and Lohrmann, B. and Pätz, H.-W. and Perner, C. R. and Rohrer, F. and Schäfer, J. and Stutz, J.}, title = {{F}ree radicals and fast photochemistry during {BERLIOZ}}, journal = {Journal of atmospheric chemistry}, volume = {42}, issn = {0167-7764}, address = {Dordrecht [u.a.]}, publisher = {Springer Science + Business Media B.V}, reportid = {PreJuSER-34288}, pages = {359 - 394}, year = {2002}, note = {Record converted from VDB: 12.11.2012}, abstract = {The free radicals OH, HO2, RO2, and NO3 are known to be the driving force for most chemical processes in the atmosphere. Since the low concentration of the above radicals makes measurements particularly difficult, only relatively few direct measurements of free radical concentrations have been reported to date. We present a comprehensive set of simultaneous radical measurements performed by Laser Induced Fluorescence (LIF), Matrix Isolation - Electron spin Resonance (MI-ESR), Peroxy Radical Chemical Amplification (PERCA), and Differential Optical Absorption Spectroscopy (DOAS) during the BERLIner OZonexperiment (BERLIOZ) during July and August of 1998 near Berlin, Germany. Most of the above radical species were measured by more than one technique and an intercomparison gave good agreement. This data set offered the possibility to study and quantify the role of each radical at a rural, semi-polluted site in the continental boundary layer and to investigate interconnections and dependencies among these free radicals. In general (box) modelled diurnal profiles of the different radicals reproduced the measurements quite well, however measured absolute levels are frequently lower than model predictions. These discrepancies point to disturbing deficiencies in our understanding of the chemical system in urban air masses. In addition considerable night-time peroxy radical production related to VOC reactions with NO3 and O-3 could be quantified.}, keywords = {J (WoSType)}, cin = {ICG-II}, ddc = {540}, cid = {I:(DE-Juel1)VDB48}, pnm = {Chemie und Dynamik der Geo-Biosphäre}, pid = {G:(DE-Juel1)FUEK257}, shelfmark = {Environmental Sciences / Meteorology $\&$ Atmospheric Sciences}, typ = {PUB:(DE-HGF)16}, UT = {WOS:000175947400016}, doi = {10.1023/A:1015707531660}, url = {https://juser.fz-juelich.de/record/34288}, }