000034366 001__ 34366
000034366 005__ 20240712101038.0
000034366 0247_ $$2DOI$$a10.1029/2002JD002415
000034366 0247_ $$2WOS$$aWOS:000181113600008
000034366 0247_ $$2ISSN$$a0141-8637
000034366 0247_ $$2Handle$$a2128/20581
000034366 0247_ $$2altmetric$$aaltmetric:3132335
000034366 037__ $$aPreJuSER-34366
000034366 041__ $$aeng
000034366 082__ $$a550
000034366 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000034366 1001_ $$0P:(DE-HGF)0$$aReeves, C. E.$$b0
000034366 245__ $$aPotential for photochemical ozone formation in the troposhere over the North Atlantic as derived from aircraft observations during ACSOE
000034366 260__ $$aWashington, DC$$bUnion$$c2002
000034366 300__ $$a4707
000034366 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000034366 3367_ $$2DataCite$$aOutput Types/Journal article
000034366 3367_ $$00$$2EndNote$$aJournal Article
000034366 3367_ $$2BibTeX$$aARTICLE
000034366 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000034366 3367_ $$2DRIVER$$aarticle
000034366 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227$$y23
000034366 500__ $$aRecord converted from VDB: 12.11.2012
000034366 520__ $$a[1] In this paper, ozone (O-3), water vapor (H2O), carbon monoxide (CO), and peroxide concentrations and photolysis rates measured in the troposphere over the North Atlantic during two Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) aircraft field campaigns are used to calculate the concentration of nitric oxide (NO) required for net photochemical O-3 production (nP(O3)) to be positive (NOcomp). NOcomp tended to show a decrease with altitude, although it was sometimes found to be low in the marine boundary layer (MBL) where H2O concentrations were high and O-3 concentrations were low. nP(O3) was calculated for the spring when NO data were available and was found to be mostly negative and generally increased from about -0.5 to -0.2 ppbv hr(-1) in the MBL to +0.04 ppbv hr(-1) at about 7-8 km altitude. The results suggest that much of the lower and middle troposphere over the eastern North Atlantic during spring is in a state of slow net photochemical O-3 destruction. However, in the upper troposphere, the system changes to one of net photochemical production, which results from the drier environment and higher NO concentrations. Furthermore, examples of net O-3 production were also observed in the lower and middle troposphere associated with either in situ sources of NO or long-range transport of pollution. The paper also illustrates the sensitivity of this O-3 production/loss state to H2O and NO concentrations, photolysis rates, and temperatures.
000034366 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000034366 588__ $$aDataset connected to Web of Science
000034366 650_7 $$2WoSType$$aJ
000034366 65320 $$2Author$$aphotochemical ozone formation
000034366 65320 $$2Author$$aNorth Atlantic
000034366 65320 $$2Author$$aaircraft observations
000034366 7001_ $$0P:(DE-HGF)0$$aPenkett, S. A.$$b1
000034366 7001_ $$0P:(DE-HGF)0$$aBauguitte, S.$$b2
000034366 7001_ $$0P:(DE-HGF)0$$aLaw, K. S.$$b3
000034366 7001_ $$0P:(DE-HGF)0$$aEvans, M. J.$$b4
000034366 7001_ $$0P:(DE-HGF)0$$aBandy, B. J.$$b5
000034366 7001_ $$0P:(DE-HGF)0$$aMonks, P. S.$$b6
000034366 7001_ $$0P:(DE-HGF)0$$aEdwards, G. D.$$b7
000034366 7001_ $$0P:(DE-HGF)0$$aPhilips, G.$$b8
000034366 7001_ $$0P:(DE-HGF)0$$aBarjat, H.$$b9
000034366 7001_ $$0P:(DE-HGF)0$$aKent, J.$$b10
000034366 7001_ $$0P:(DE-HGF)0$$aDewey, K.$$b11
000034366 7001_ $$0P:(DE-Juel1)VDB1438$$aSchmitgen, S.$$b12$$uFZJ
000034366 7001_ $$0P:(DE-Juel1)16204$$aKley, D.$$b13$$uFZJ
000034366 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2002JD002415$$gVol. 107, p. 4707$$p4707$$q107<4707$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000034366 8567_ $$uhttp://dx.doi.org/10.1029/2002JD002415
000034366 8564_ $$uhttps://juser.fz-juelich.de/record/34366/files/2002JD002415.pdf$$yOpenAccess
000034366 8564_ $$uhttps://juser.fz-juelich.de/record/34366/files/2002JD002415.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000034366 909CO $$ooai:juser.fz-juelich.de:34366$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000034366 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000034366 9141_ $$aNachtrag$$y2002
000034366 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000034366 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000034366 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000034366 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000034366 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000034366 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000034366 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000034366 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x0
000034366 970__ $$aVDB:(DE-Juel1)4261
000034366 9801_ $$aFullTexts
000034366 980__ $$aVDB
000034366 980__ $$aConvertedRecord
000034366 980__ $$ajournal
000034366 980__ $$aI:(DE-Juel1)IEK-8-20101013
000034366 980__ $$aUNRESTRICTED
000034366 981__ $$aI:(DE-Juel1)ICE-3-20101013
000034366 981__ $$aI:(DE-Juel1)IEK-8-20101013