000034632 001__ 34632
000034632 005__ 20200423203639.0
000034632 017__ $$aThis version is available at the following Publisher URL: http://jcp.aip.org
000034632 0247_ $$2DOI$$a10.1063/1.1562620
000034632 0247_ $$2WOS$$aWOS:000181442100003
000034632 0247_ $$2Handle$$a2128/2220
000034632 037__ $$aPreJuSER-34632
000034632 041__ $$aeng
000034632 082__ $$a540
000034632 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000034632 1001_ $$0P:(DE-HGF)0$$aKneller, G. R.$$b0
000034632 245__ $$aMass and size effects of the memory function of tracer particles
000034632 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2003
000034632 300__ $$a5283 - 5286
000034632 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000034632 3367_ $$2DataCite$$aOutput Types/Journal article
000034632 3367_ $$00$$2EndNote$$aJournal Article
000034632 3367_ $$2BibTeX$$aARTICLE
000034632 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000034632 3367_ $$2DRIVER$$aarticle
000034632 440_0 $$03145$$aJournal of Chemical Physics$$v118$$x0021-9606$$y2
000034632 500__ $$aRecord converted from VDB: 12.11.2012
000034632 520__ $$aUsing autoregressive modeling of discrete signals, we investigate the influence of mass and size on the memory function of a tracer particle immersed in a Lennard-Jones liquid. We find that the memory function of the tracer particle scales with the inverse reduced mass of the simulated system. Increasing the particle's mass leads rapidly to a slow exponential decay of the velocity autocorrelation function, whereas the memory function changes just its amplitude. This effect is the more pronounced the smaller and the heavier the tracer particle is. (C) 2003 American Institute of Physics.
000034632 536__ $$0G:(DE-Juel1)FUEK254$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung des Höchstleistungsrechners$$cI03$$x0
000034632 588__ $$aDataset connected to Web of Science
000034632 650_7 $$2WoSType$$aJ
000034632 7001_ $$0P:(DE-HGF)0$$aHinsen, K.$$b1
000034632 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b2$$uFZJ
000034632 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.1562620$$gVol. 118, p. 5283 - 5286$$p5283 - 5286$$q118<5283 - 5286$$tThe @journal of chemical physics$$v118$$x0021-9606$$y2003
000034632 8567_ $$uhttp://hdl.handle.net/2128/2220$$uhttp://dx.doi.org/10.1063/1.1562620
000034632 8564_ $$uhttps://juser.fz-juelich.de/record/34632/files/40553.pdf$$yOpenAccess
000034632 8564_ $$uhttps://juser.fz-juelich.de/record/34632/files/40553.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000034632 8564_ $$uhttps://juser.fz-juelich.de/record/34632/files/40553.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000034632 8564_ $$uhttps://juser.fz-juelich.de/record/34632/files/40553.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000034632 909CO $$ooai:juser.fz-juelich.de:34632$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000034632 9131_ $$0G:(DE-Juel1)FUEK254$$bInformation$$kI03$$lWissenschaftliches Rechnen$$vBetrieb und Weiterentwicklung des Höchstleistungsrechners$$x0
000034632 9141_ $$aNachtrag$$y2003
000034632 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000034632 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000034632 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000034632 970__ $$aVDB:(DE-Juel1)40553
000034632 980__ $$aVDB
000034632 980__ $$aJUWEL
000034632 980__ $$aConvertedRecord
000034632 980__ $$ajournal
000034632 980__ $$aI:(DE-Juel1)JSC-20090406
000034632 980__ $$aUNRESTRICTED
000034632 980__ $$aFullTexts
000034632 9801_ $$aFullTexts
000034632 981__ $$aI:(DE-Juel1)JSC-20090406