000003486 001__ 3486
000003486 005__ 20200423202449.0
000003486 0247_ $$2pmid$$apmid:18701229
000003486 0247_ $$2DOI$$a10.1016/j.mri.2008.06.007
000003486 0247_ $$2WOS$$aWOS:000263533300015
000003486 037__ $$aPreJuSER-3486
000003486 041__ $$aeng
000003486 082__ $$a610
000003486 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000003486 1001_ $$0P:(DE-Juel1)VDB1270$$aPohlmeier, A.$$b0$$uFZJ
000003486 245__ $$aImaging water fluxes in porous media by magnetic resonance imaging using D2O as a tracer
000003486 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2009
000003486 300__ $$a285 - 292
000003486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000003486 3367_ $$2DataCite$$aOutput Types/Journal article
000003486 3367_ $$00$$2EndNote$$aJournal Article
000003486 3367_ $$2BibTeX$$aARTICLE
000003486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000003486 3367_ $$2DRIVER$$aarticle
000003486 440_0 $$04146$$aMagnetic Resonance Imaging$$v27$$x0730-725X$$y2
000003486 500__ $$aRecord converted from VDB: 12.11.2012
000003486 520__ $$aIn this study, we investigate the usefulness of D(2)O as a conservative tracer for monitoring water flux by MRI in a heterogeneous sand column. The column consisted of a cylindrical 3x9-cm packing of fine sand in which an 8-mm diameter cylindrical obstacle was placed. Constant steady-state flux densities between J(w)=0.07 and 0.28 cm min(-1) corresponding to mean pore flow velocities between 0.20 and 0.79 cm min(-1) were imposed at the top of the sand column, and a constant hydraulic head of -39 cm was maintained at the lower boundary. We injected pulses of 0.01 M NiCl(2) and 55% D(2)O and monitored the motion of the tracer plumes by MRI using a fast spin echo sequence over a period of 20 min. We observed that the center of gravity of all plumes moved with the mean pore flow velocity, which showed that D(2)O behaves as a conservative tracer. The motion of the tracer plume at J(w)=0.14 cm min(-1) was validated by a numerical simulation using HYDRUS2D, which reproduced the experimentally observed behavior very satisfactorily.
000003486 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000003486 588__ $$aDataset connected to Web of Science, Pubmed
000003486 650_7 $$2WoSType$$aJ
000003486 65320 $$2Author$$aMRI
000003486 65320 $$2Author$$aSand
000003486 65320 $$2Author$$aTransport
000003486 65320 $$2Author$$aFlux
000003486 65320 $$2Author$$aTracer
000003486 65320 $$2Author$$aModeling
000003486 65320 $$2Author$$aHYDRUS2D
000003486 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, D.$$b1$$uFZJ
000003486 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b2$$uFZJ
000003486 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b3$$uFZJ
000003486 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000003486 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2008.06.007$$gVol. 27, p. 285 - 292$$p285 - 292$$q27<285 - 292$$tMagnetic resonance imaging$$v27$$x0730-725X$$y2009
000003486 8567_ $$uhttp://dx.doi.org/10.1016/j.mri.2008.06.007
000003486 8564_ $$uhttps://juser.fz-juelich.de/record/3486/files/FZJ-3486.pdf$$yRestricted$$zPublished final document.
000003486 909CO $$ooai:juser.fz-juelich.de:3486$$pVDB
000003486 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000003486 9141_ $$y2009
000003486 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000003486 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000003486 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x2
000003486 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x3
000003486 970__ $$aVDB:(DE-Juel1)109557
000003486 980__ $$aVDB
000003486 980__ $$aConvertedRecord
000003486 980__ $$ajournal
000003486 980__ $$aI:(DE-Juel1)IBG-2-20101118
000003486 980__ $$aI:(DE-Juel1)IBG-3-20101118
000003486 980__ $$aI:(DE-82)080011_20140620
000003486 980__ $$aUNRESTRICTED
000003486 981__ $$aI:(DE-Juel1)IBG-2-20101118
000003486 981__ $$aI:(DE-Juel1)IBG-3-20101118
000003486 981__ $$aI:(DE-Juel1)VDB1047