001     3486
005     20200423202449.0
024 7 _ |2 pmid
|a pmid:18701229
024 7 _ |2 DOI
|a 10.1016/j.mri.2008.06.007
024 7 _ |2 WOS
|a WOS:000263533300015
037 _ _ |a PreJuSER-3486
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Pohlmeier, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1270
245 _ _ |a Imaging water fluxes in porous media by magnetic resonance imaging using D2O as a tracer
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2009
300 _ _ |a 285 - 292
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Magnetic Resonance Imaging
|x 0730-725X
|0 4146
|y 2
|v 27
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In this study, we investigate the usefulness of D(2)O as a conservative tracer for monitoring water flux by MRI in a heterogeneous sand column. The column consisted of a cylindrical 3x9-cm packing of fine sand in which an 8-mm diameter cylindrical obstacle was placed. Constant steady-state flux densities between J(w)=0.07 and 0.28 cm min(-1) corresponding to mean pore flow velocities between 0.20 and 0.79 cm min(-1) were imposed at the top of the sand column, and a constant hydraulic head of -39 cm was maintained at the lower boundary. We injected pulses of 0.01 M NiCl(2) and 55% D(2)O and monitored the motion of the tracer plumes by MRI using a fast spin echo sequence over a period of 20 min. We observed that the center of gravity of all plumes moved with the mean pore flow velocity, which showed that D(2)O behaves as a conservative tracer. The motion of the tracer plume at J(w)=0.14 cm min(-1) was validated by a numerical simulation using HYDRUS2D, which reproduced the experimentally observed behavior very satisfactorily.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a MRI
653 2 0 |2 Author
|a Sand
653 2 0 |2 Author
|a Transport
653 2 0 |2 Author
|a Flux
653 2 0 |2 Author
|a Tracer
653 2 0 |2 Author
|a Modeling
653 2 0 |2 Author
|a HYDRUS2D
700 1 _ |a van Dusschoten, D.
|b 1
|u FZJ
|0 P:(DE-Juel1)129425
700 1 _ |a Weihermüller, L.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB17057
700 1 _ |a Schurr, U.
|b 3
|u FZJ
|0 P:(DE-Juel1)129402
700 1 _ |a Vereecken, H.
|b 4
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |a 10.1016/j.mri.2008.06.007
|g Vol. 27, p. 285 - 292
|p 285 - 292
|q 27<285 - 292
|0 PERI:(DE-600)1500646-3
|t Magnetic resonance imaging
|v 27
|y 2009
|x 0730-725X
856 7 _ |u http://dx.doi.org/10.1016/j.mri.2008.06.007
856 4 _ |u https://juser.fz-juelich.de/record/3486/files/FZJ-3486.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:3486
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-3
|l Phytosphäre
|0 I:(DE-Juel1)ICG-3-20090406
|x 1
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 2
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)109557
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21