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Abstract

We have analysed relative humidity statistics from measurements in cirrus clouds taken

unintentionally during the Measurement of OZone by Airbus In-service airCraft project

(MOZAIC). The shapes of the in-cloud humidity distributions change from nearly sym-

metric in relatively warm cirrus (warmer than −40
◦
C) to considerably positively skew5

(i.e. towards high humidities) in colder clouds. These results are in agreement to find-

ings obtained recently from the INterhemispheric differences in Cirrus properties from

Anthropogenic emissions (INCA) campaign (Ovarlez et al., 2002). We interprete the

temperature dependence of the shapes of the humidity distributions as an effect of

the length of time a cirrus cloud needs from formation to a mature equilibrium stage,10

where the humidity is close to saturation. The duration of this transitional period in-

creases with decreasing temperature. Hence cold cirrus clouds are more often met in

the transitional stage than warm clouds.

1. Introduction

The formation of cirrus clouds in the upper troposphere requires that the relative hu-15

midity (with respect to ice, RHi ) exceeds certain freezing thresholds. These are gener-

ally much higher than 100%; for instance, homogeneous freezing of aqueous solution

droplets at temperatures below the supercooling limit of pure water (≈ −40
◦
C) needs

RHi > 140% (Koop et al., 2000). Cirrus formation and its subsequent evolution into

a mature cirrus cloud (where RHi is close to saturation) affects the ambient relative20

humidity field, and it is possible to conclude on cirrus formation pathways by investiga-

tion of their ambient RHi -distribution (Haag et al., 2003). It is obvious that the humidity

within a cloud is even stronger affected by the cloud since it is directly involved in the mi-

crophysical processes. It is then clear that the microphysical processes within a cloud

shape the statistical distribution of the RHi -field. Therefore it should principally be pos-25

sible to gain insight into the microphysical processes by considering the RHi -statistics
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within clouds.

The statistical distribution of the relative humidity with respect to ice within cirrus

clouds was investigated by Ovarlez et al. (2002) using data obtained during the INCA

campaigns in the southern (Punta Arenas, Chile, 55
◦
S) and northern (Prestwick, Scot-

land, 55
◦
N) hemispheres, respectively. The distinction between in-cloud and out-of-5

cloud situations was made on the basis of the extinction coefficient measured with a

polar nephelometer (Gayet et al., 1997): An extinction coefficient of less than 0.05 km
−1

was considered a cloud free situation. This corresponds roughly to an ice crystal con-

centration of 50–100 particles L
−1

of 5 µm diameter. Ovarlez et al. (2002) found es-

sentially that two types of distributions can be well fitted to the observations. These are10

a Gaussian distribution for cirrus warmer than −40
◦
C and a Rayleigh distribution for

cirrus colder than −40
◦
C. The main point to note here is rather the symmetry of the re-

spective distribution than the type of the distribution itself (which should be considered

merely a convenient mathematical expression for the fits). Warmer clouds possess

symmetric or quasi-symmetric distributions of RHi centred about 100% (exemplified15

by the Gaussian) whereas colder clouds possess distributions of RHi with positive

skewness (exemplified by the Rayleigh distribution), i.e. they have a tail towards higher

values. This tail might be interpreted a signature of clouds in statu nascendi , where

the supersaturation has not yet relaxed to a value close to equilibrium (i.e. saturation).

Ovarlez et al. (2002) found slight differences between the in-cloud humidity distribu-20

tions obtained at the two locations, with a tendency for higher values of RHi in the

southern hemisphere.

In the present paper we analyse humidity data from another data source, namely

from the Measurement of OZone by Airbus In-service airCraft project (MOZAIC, Marenco

et al., 1998; Helten et al., 1998) and we will show that these data are consistent with25

the results of Ovarlez et al. (2002).
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2. Data handling

For the present investigation we use the statistical data of relative humidity with re-

spect to ice in the (mostly northern hemispheric) tropopause region as obtained from

MOZAIC aircraft (Gierens et al., 1999). For this data set it is not really possible to

decide whether a recording that signals supersaturation comes from cloud free air or5

from within a cirrus cloud. Thus the humidity statistics obtained from the data set

bears signatures from both cloudy and clear air. Of course, data from substantially

subsaturated air are obviously obtained in clear regions. The common characteristics

of all humidity statistics obtained from these data sets is a relatively flat exponential

distribution for the subsaturated air (i.e. 20%. RHi .80%) and a steeper exponential10

distribution in supersaturated air masses (cf. Fig 2). These characteristics can also be

found in humidity statistics obtained from the microwave limb sounder (MLS) on board

the Upper Atmosphere Research Satellite (UARS), where a cloud clearing could be

performed successfully (Spichtinger et al., 2002, 2003). Hence, the exponential parts

of the humidity statistics are characteristic for cloud free air. The signature of clouds15

in the MOZAIC data is a “bulge” around saturation (i.e. RHi ≈ 100 ± 20%). Such a

bulge is not present in the cloud cleared MLS data. Whereas we were interested in the

exponential parts of the humidity statistics in our previous papers, we will here consider

the “cloud bulge” in more detail.

The interpretation of the bulges as a cloud signature can be underpinned by taking20

a look at data from the INCA project, namely at the combination of humidity data from

the frostpoint hygrometer (Ovarlez et al., 2002) and extinction data from the neph-

elometer (Gayet et al., 1997). The combination allows to distinguish in-cloud from

out-of-cloud data records: As in the work of Ovarlez et al. (2002) we fix the cloud

threshold at an extinction of 0.05 km
−1

. Using all measurements in the pressure range25

200 ≤ p ≤ 600 hPa and in the temperature range 200 ≤ T ≤ 240 K, we have derived

three statistical distributions of relative humidity: inside clouds, outside clouds, and ir-

respective of cloud presence (i.e. the sum of the two others). These distributions are
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shown in Fig. 1. The relative humidity distribution of cloud free data shows the usual

characteristic of tropospheric data (see e.g. Gierens et al., 1999; Spichtinger et al.,

2002). The shape of the distribution can be described using two exponential distribu-

tions with different slopes. As we expected, there is a kink at saturation. In contrast

the distribution obtained from the cloudy data has the shape as described in Ovarlez5

et al. (2002): The distribution is centred at saturation and the frequency of occurrence

of relative humidity decreases towards lower and higher humidities. The most interest-

ing distribution for our present purpose is that obtained from the sum. This distribution

has qualitatively the same shape as the distributions obtained from the MOZAIC data:

There is the characteristic shape of the pair of exponential distributions (typically for10

tropospheric data) but there is also a bulge around saturation. This bulge is the result

of the in-cloud data which is evident from the figure.

In order to investigate the cloud bulges in MOZAIC data we treat the data in the

following way: First we run a moving average (with a window width of 5% RHi ) over

the respective distribution to reduce their statistical noise. Then we construct baselines15

representing the exponential parts of each distribution and subtract them from their

respective distribution of RHi . The residuum from this operation is the bulge alone.

This baseline is constructed in the following way: On the left and the right of the bulge

there are the exponentials with their different slopes (2 free parameters).These two

exponentials are then smoothly connected by means of an “exponential” with varying20

exponent. The varying exponent is a Fermi function centred at a value close to 100% (1

free parameter). The width of the Fermi function is adjustable (1 free parameter). The

whole baseline function is scaled with another adjustable parameter, such that there

are a total of 5 free parameters. The functional form of the baseline is then:

B(x) = N exp[−F (x) · (x − xc)] (1)25

with the Fermi function

F (x) = a +
b − a

1 + e−c(x−xc)
. (2)
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Obviously, the limiting values for large negative (subsaturation) and large positive val-

ues (supersaturation) of x − xc are a and b, respectively, which are the slopes of the

corresponding exponential distributions. xc is the value where the Fermi function is

centred, and c determines the sharpness of the transition between the two slopes a
and b. N is the scale parameter. These five free parameters ({a, b, c, xc, N}) are deter-5

mined numerically using a simple optimisation routine, that aims at minimising the sum

of squared differences between the baseline fit and the data in the two RHi regions

where the distribution is exponential.

After subtraction of the baseline the cloud bulge plus some residual noise remains

and can be studied further. This is done in the next section. Certainly, the remain-10

ing bulge is sensitive to the construction of the baseline and to the parameters. For

studying the impact of baseline construction on the bulge we have used the following

procedure: For each distribution of RHi we have constructed several baselines distin-

guished by different ranges of best fit in the exponential parts, e.g. 30–70% or 30–80%

etc. The standard range for the calculations was 40–80% RHi and 120–160% RHi .15

Within these ranges the distributions obviously follow exponential distributions. The dif-

ferent fit ranges per se imply differences in the goodness-of-fit measure χ2
. Therefore

we use for comparison of the quality of the fits a normalised χ2
RHi := 100% · χ2

∆RHi
were

∆RHi denotes the range within the baseline was constructed. With this variable we

are able to determine the best baseline and using the distinct baselines we can study20

the variations of baseline construction and their impact on the bulge. An example of

some different baseline fittings is given in Fig. 2.

The corresponding bulges after subtraction of these various baselines are shown in

Fig. 3.

We interprete the bulges or the difference distributions as cloud signatures and as25

distribution of relative humidity inside clouds. But, as one can see in the figures, the

residual number of events after baseline subtraction are sometimes negative, which

simply is a consequence of the fact that it is not strictly possible to discern cloudy

from non-cloudy data in MOZAIC, that is, the baselines are too close to the data. This
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indicates, that with the baselines subtracted we probably also remove in-cloud data,

especially in the supersaturated region. As (Fig. 1) shows, the slopes of the humidity

distributions above ice saturation in the in-cloud and out-of-cloud INCA data are similar,

which could mean that by the baseline subtraction we remove from all supersaturation

bins nearly a constant (but here unknown) fraction of in-cloud data. However, since5

there is no possibility to flag cloudy data, we do not see a better possibility of baseline

construction. Thus we have to accept that we miss some of the cloudy data and that

we also have negative values in the residuals, which we will set to zero for the further

analysis.

For analysis of the difference distributions we calculate the mean values, standard10

deviations and the so-called L-skewness (for a definition see the appendix). We use the

L-skewness instead of the usual skewness because of its greater robustness against

outliers (see e.g. Guttman, 1993), which is necessary here because there is still some

noise in the bulge data even after the initial smoothing. The traditional skewness is

very sensitive to such noise and can therefore not be used as a reliable measure.15

These statistical measures are calculated in the range 70–150% RHi , which per

se introduces a certain positive skewness even in a perfectly symmetric distribution

(see below). The lower boundary is considered a lower threshold where most cirrus

clouds will be evaporated completely. The upper boundary is a typical threshold for

homogeneous ice nucleation in the upper troposphere (see Koop et al., 2000); higher20

thresholds apply for still colder temperatures, but the data get more noisy, hence we

constrain the range for our calculations to 150% and do not go beyond. Since we

constrain the calculation of mean, standard deviation and L-skewness to this range

which is asymmetric with respect to saturation, we have to determine how this affects

in particular the calculation of the skewness. In order to estimate this effect we analyse25

a Gaussian (i.e. symmetric) distribution in the range 70–150% RHi with and without

an additional perturbation at 150% RHi (about 5% of the maximum). This Gaussian
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distribution

fX (x) =
1

√

2πσ0

exp

(

−
1

2

(

x − µ0

σ0

)2
)

is centred at µ0 = 100% RHi and the parameter σ0 = 11.25% RHi is chosen such

that the standard deviation (for the range 70–150%RHi ) is similar to those determined

for the bulges. If we now compute the statistical measures in the restricted range5

70–150% RHi , we find the mean value in the range 100.11 ≤ µ ≤ 100.19% RHi
(the greater value arises when the noise peak at 150% is added), and the standard

deviation in the range 11.10 ≤ σ ≤ 11.28% RHi . The most important result is that the

L-skewness τ3 ranges within: 0.0077 ≤ τ3 ≤ 0.0161 (for a symmetric distribution the

L-skewness is zero by definition). Hence, in the discussion of the results a distribution10

with τ3 ≤ 0.0161 can be classified as nearly symmetric, a distribution with τ3 > 0.0161

can be classified as asymmetric.

3. Results

3.1. MOZAIC data

Let us first consider MOZAIC data recorded south of 30
◦
N (tropical data) between15

1995 and 1999. We show tropospheric data from four pressure levels 190–209, 210–

230, 231–245, and 246–270 hPa (hereafter levels 1–4). All these are characterised

by a rather narrow temperature distribution. The mean temperatures on the four lev-

els are −54, −49, −44, −39
◦
C, respectively, the standard deviations range between

2.0
◦
C and 3.3

◦
C. Hence, using these levels there is a splitting of the data in distinct20

temperature classes. After applying the procedure described in Sect. 2 we see that

for all different baseline fits the structure of the difference distributions remains mainly

the same. Hence, it is acceptable to consider the best fit for describing the structure of

the distributions. For evaluating the distributions more quantitatively we consider also
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the variations of the baseline fits, particularly the varying L-skewness. The measured

humidity distributions of the cloud bulges (after baseline subtraction of the best fit, i.e.

minimising χ2
RHi ) are presented in Fig. 4.

It can be seen that after baseline subtraction the residual number of events is rather

small compared to the original data base (cf. the numbers along the y-axis of Fig. 2).5

But nevertheless, the distributions contain a considerable fraction of the total data (13–

33%, depending on the pressure level) and the noise in the distributions is quite small

(due to the moving average of the RHi -distributions). For all distributions we see quite

the same shape: The distribution is centred around saturation, the mean values range

between 97 and 103% RHi and the standard deviations are about 11% RHi (see Ta-10

ble 1). The difference distributions obtained at the two upper pressure levels (level

1 and 2) are clearly skew (i.e. asymmetric), distributions from the two lower levels

(level 3 and 4) are symmetric. This result can be verified by the L-skewness: For the

two upper pressure levels the L-skewness τ3 takes values in the following intervals:

0.1068 ≤ τ3(level 1) ≤ 0.1310 and 0.0071 ≤ τ3(level 2) ≤ 0.0598. Hence, the differ-15

ence distributions for the upper two levels are asymmetric according to the L-skewness

(see Sect. 2). For the two lower pressure levels the L-skewness τ3 ranges between

−0.0480 and 0.0084, therefore we can assume that the distributions are nearly sym-

metric according to the L-skewness (see Sect. 2).

We now consider tropospheric MOZAIC data recorded north of 30
◦
N (extratropical20

data) between 1995 and 1999 in the pressure range 175 ≤ p ≤ 275 hPa. For this data

set there is not such a sharp temperature stratification due to the pressure levels as in

the tropical data. Hence, for studying the distributions in distinct temperature classes

we split the data in the following way: One class K1 contains all data with temperatures

in the interval −55 ≤ T ≤ −50
◦
C, and one class K2 with temperatures in the interval25

−50 ≤ T ≤ −45
◦
C. Additionally, we have collected all data (including data from outside

the warm and cold classes) to a third class. A more detailed splitting of the data is not

reasonable because of the noise that then appears. In Fig. 5 the difference distributions

of the three classes (total, K1 and K2 data) are presented.
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As for the tropical data after baseline subtraction the residual number of events is

rather small compared with the original data set. But also in these cases the remaining

number of data in the difference distributions are large enough to draw some conclu-

sions although the fraction of the remaining data ranges between 2 and 8%: The total

number of data are much higher for the extratropics than for the tropics. The statistical5

noise is quite small again.

We can see a similar result as for the tropical distributions: the difference distributions

for the three data classes are again centred at saturation, the mean values range

between 98 and 106% RHi , the standard deviations range between 8 and 11% RHi .
The difference distributions obtained from the total extratropic data and the “cold10

data” are clearly skew, the distribution obtained from the “warm data” is almost sym-

metric. This is confirmed by the L-skewnesses: For the total data the L-skewness is

0.0955 ≤ τ3 ≤ 0.1178, for the “cold data” the L-skewness is 0.0882 ≤ τ3 ≤ 0.1225.

Hence, these distributions are clearly asymmetric. The L-skewness for the “warm data”

is −0.0186 ≤ τ3 ≤ 0.0524 and therefore we can conclude, that this distribution is almost15

symmetric.

The mean values, standard deviations and L-skewness values are collected in Ta-

ble 1, the L-skewness values (and their variations) are visualised in Fig. 6. In this figure

additionally the values for a Gaussian distribution and a perturbed Gaussian distribu-

tion (see Sect. 2) are shown, hence it is easy to distinguish between the symmetric and20

asymmetric distributions.

In looking at Fig. 6 one should consider the values displayed as lower estimates,

because, as stated before, the range of the computation of the moments was confined

at 150% RHi and cloud events can get lost in our baseline subtraction procedure.

Since this happens evidently more probably in the supersaturated than in the subsatu-25

rated regime, the underestimation of the true L-skewness is probably the stronger the

more asymmetric is the distribution. Thus, we expect that the true contrast between

the skewnesses for warm and cold clouds, respectively, is larger than indicated by the

error bars in the figure.
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3.2. INCA data

The INCA campaigns took place in the extratropical latitudes of both hemispheres.

Hence, we can compare the distributions of relative humidity in clouds obtained from

the INCA data set to the corresponding distributions obtained from the extratropical

MOZAIC data. As before we have picked the INCA data out of two different temperature5

classes: The class C1 contains all data in the temperature range −55 ≤ T ≤ −50
◦
C and

the class C2 contains all data in the temperature range −50 ≤ T ≤ −45
◦
C. For these two

classes we have calculated the L-skewness in the range 70–150% RHi . The values

for the two distributions (τ3(C1) = 0.1377, τ3(C2) = 0.0860) are visualised in Fig. 6.

We get the same qualitative effect as for the two difference distributions obtained from10

the temperature classes K1 and K2 (MOZAIC): For the colder clouds the distribution

is skewer than for the warmer clouds. Comparing these values with the L-skewness

obtained from the MOZAIC data (classes K1 and K2) we see that the values of MOZAIC

data are a lower approximation due to the causes mentioned in Sect. 2.

3.3. MLS data15

In order to show as a contrast to the previous data sets an example where cloud clear-

ing works effectively, we show here one example of MLS data analysis for the two nom-

inal pressure levels of 147 hPa and 215 hPa (Spichtinger et al., 2002, 2003). Figure 7

shows that for all concerned tropospheric data sets after baseline subtraction there re-

mains only noise. This can be interpreted that the cloud clearing algorithm described20

in Spichtinger et al. (2002, 2003) works very well and almost no cloudy measurements

are left in the data.

4. Discussion

Obviously there is a qualitative difference between the in-cloud distributions of RHi for

warm and cold cirrus, respectively. This contrast consists of the different shapes of the25
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distributions, namely symmetric for warm cirrus versus positively skew for cold cirrus.

This leads to the question about the physical processes (or possibly selection biases)

that produce such qualitatively different distributions of in-cloud relative humidity.

We believe that the difference we see in the humidity distributions is caused by the

temperature dependence of the length of time a cirrus cloud needs to approach sat-5

uration from an initial high supersaturation at its instant of formation. This transitional

period is about twice as long at −60
◦
C than at −40

◦
C, because both the diffusivity of

water molecules in air and the saturation vapour pressure decrease with decreasing

temperature. The nominal crystal growth time scale in a young cirrus cloud can be

written as (Gierens, 2003)10

τg = 7.14 × 105 T−1.61 p [s0 e
∗(T )]−1/3N−2/3, (3)

with initial supersaturation at cirrus formation s0, saturation vapour pressure over ice

e∗
(T ) (in Pa), and number density of ice crystals formed N (in m

−3
). τg is in sec-

onds. Typical growth time scales range from 10 min to half an hour, however, the cirrus

transition time to phase equilibrium is more than double that quantity, in particular be-15

cause initially the condensation rate is very small since the ice crystals are very small.

This means that the transition period from cirrus formation to phase equilibrium can

make up a substantial fraction of the total cloud life time. In fact, especially thin and

sub-visible cirrus in cold air (below about 215 K) may not reach equilibrium at all, i.e.

the crystals sediment out of the cloud before the in-cloud humidity reaches saturation20

(Kärcher, 2002). This in turn implies that a substantial fraction of the cirrus clouds

probed unintentionally by a MOZAIC aircraft can still be in the transition phase. Since

the duration of the transition phase increases with decreasing temperature, the proba-

bility to probe a cirrus in the transition phase instead of the equilibrium phase increases

with decreasing temperature. From this consideration we would expect, that we find25

a slightly positively skew (or almost symmetric) distribution of RHi in warm cirrus, but

a strongly skew distribution in cold cirrus. Furthermore, the threshold supersaturation

for homogeneous nucleation grows about linearly with decreasing temperature. This
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additionally leads to a longer relaxation phase for cold than for warm clouds.

Also vertical motions have an influence on the duration of the transition to phase

equilibrium. Uplifting motions evidently prolong this period. The effect can be quantified

by using the updraft time scale, τu (Gierens, 2003):

τu = 1.67 × 10−2 w−1 T 2, (4)5

with vertical velocity w. The transition duration increases with decreasing updraft

timescale. Hence, strong vertical motion leads to an additional prolongation of the

transition period. Unfortunately, the MOZAIC data base contains no information about

vertical velocities, therefore this effect cannot be quantified. Additionally, at the same

vertical motion the transition duration increases with decreasing temperature, which10

adds to the microphysical temperature effect mentioned above.

We have performed a simple numerical exercise to simulate the transition process

without considering the dynamical effect. The simulation starts with an initial relative

humidity of 140% or 160%, and then the RHi changes in variable steps of about ±1%

according to the sign of a uniformly distributed random number. The range of the15

random number distribution is slightly asymmetric around zero such that there is always

a slightly higher chance that RHi gets closer to 100% than further away. The number

of steps is 800 for representation of a cold case, which is a suffiently small number that

the system has still a memory of its initial state, that is, it is in a transitional stage. In

this case the initial relative humidity was set to 160% RHi . For the warm case we use20

1600 steps (i.e. 2 × 800, since one step in the cold case represents about double the

time of one step in the warm case, because of the different growth time scales, see

above). It turns out that this number of steps is sufficient to loose the memory of the

initial state. In this case the initial relative humidity was set to 140% RHi . In order to

get smooth statistics, this simulation is repeated 100 000 times for each case. We find25

distributions centred close to 100% and with standard deviations close to 10% in both

cases (see Fig. 8). Both distributions are positively skew, but the L-skewness in the

cold case is 10 times larger than in the warm case, since in the cold case there is still
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a considerable tail in the RHi -distribution extending to the initial value of 160%. The

L-skewness values of the two simulations are indicated in Fig. 6 as crosses. Hence,

the values are similar to the values obtained from the difference distributions of the

different data sets. For the skewness of the distributions the main impact is due to the

number of steps, i.e. the different growth time. The initial relative humidity only slightly5

affects the skewness.

Having the INCA data it is the relatively straightforward idea to apply the baseline

fitting and subtraction also to this data set and to compare the resulting cloud bulge

with the true in-cloud distribution of relative humidity (dotted curve in Fig. 1). Although

the amount of INCA data is not sufficient to perform the complete analysis (too much10

noise!) this test gives interesting results. First, we find that the residual number of

events (i.e. the cloud bulge) only represents about 1/5 to 1/4 of the true cloud events

found by the nephelometer analysis. Such a fraction might be expected to be char-

acteristic for the MOZAIC data as well. However, the INCA derived fraction cannot

be generalised to MOZAIC in a straightforward way because of different measurement15

strategies, techniques, and hence different selection biases. Second, the out of cloud

data in Fig. 1 (dashed curve) can be fitted with a baseline function very well over the

total range from 30 to about 150% RHi (not shown), since it does not display a bulge

around saturation. This means that clouds thinner than the nephelometer threshold do

not contribute much to a bulge signature, and that the bulge mainly represents thicker20

clouds. The RHi -statistics within thin clouds therefore seems to resemble that of clear

air which can result because the relaxation time for thin clouds can be extremely long

(N small in Eq. 3). It can even be longer than the sedimentation time scale for the ice

crystals; such clouds do not reach phase equilibrium at all (cf. Kärcher, 2002).

5. Conclusions25

Statistical distributions of relative humidity with respect to ice in cirrus clouds have been

analysed. Humidity data from MOZAIC were taken, baselines were fitted to the ranges
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where RHi is distributed exponentially, and the residuals after baseline subtraction

have been investigated. The residuals, interpreted as data stemming from measure-

ments within cirrus clouds, are unimodal distributions peaked close to saturation, with

standard deviations of the order 10% in relative humidity units. The interpretation of

the residuals as cloud signatures is corroborated by corresponding features in the INCA5

data, where clouds can be detected using nephelometer data.

As in the earlier work of Ovarlez et al. (2002) the shape of the residual distribu-

tions (the cloud bulge) turned out to depend on cloud temperature. Whereas we found

nearly symmetric distributions in warm cirrus (T > −40
◦
C), the distributions are clearly

positively skew in colder clouds. The skewness seems to increase with decreasing10

temperature.

Our interpretation of this feature is that warm cirrus clouds probed unintentionally by

MOZAIC aircraft are mostly in a mature stage. The signature of this is a symmetric

distribution of RHi centred at saturation. On the other hand, cold cirrus probed unin-

tentionally are more often in a transitional state between their instant of formation and15

their mature stage. The signature of the transitional stage is a tail in the distribution

extending from saturation to the threshold relative humidity for freezing. The origin of

the difference lies in the different lengths of time a cirrus needs to reach equilibrium

via crystal growth after its formation at high supersaturation. The growth time scale

decreases with decreasing temperature, such that the time of transition is about twice20

as long at −60
◦
C than at −40

◦
C. This difference is reflected in the different shapes of

the humidity distributions within clouds.

Appendix: L-moments

Formal definition of L-moments:

25

For this purpose one uses sample probability weighted moments br (r = 0,1,2,3 . . .).
These moments computed from data values X1, X2, . . . Xn, arranged in increasing or-
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der, are given by

b0 :=
1

n

n
∑

j=1

Xj (5)

br :=
1

n

n
∑

j=r+1

(j − 1)(j − 2) . . . (j − r)

(n − 1)(n − 2) . . . (n − r)
Xj . (6)

Using these weighted moments br in combination with the coefficients of the “shifted

Legendre polynomials” one can define the so-called L-moments:5

l1 := b0 (7)

l2 := 2b1 − b0 (8)

l3 := 6b2 − 6b1 + b0 (9)

...

By combining these L-moments we can calculate some robust analoga to the usual10

higher moments in statistics (e.g. skewness or kurtosis). For our purpose only the

L-skewness is important:

L-skewness τ3 :=
l3
l2
. (10)

For calculating the L-skewness we use the method of Hosking (1990) which is based

on order statistics.15
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Table 1. Variations of mean values, standard deviations and L-skewness for the difference

distributions of the different MOZAIC data sets for distinct baseline fits as described in Sect. 2.

data µ(% RHi ) σ (% RHi ) τ3

tropical

lev. 1 96.86–99.88 10.18–10.50 0.1068–0.1310

lev. 2 97.56–102.96 10.60–12.14 0.0071–0.0598

lev. 3 98.39–100.95 10.22–11.69 –0.0480–0.0084

lev. 4 100.87–101.48 10.71–12.28 –0.0068–0.0057

extratr.

total 98.44–101.72 9.23–10.77 0.0955–0.1178

K1 103.09–105.64 9.20–10.87 0.0882–0.1225

K2 99.48–101.61 8.39–9.28 –0.0186–0.0524
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Fig. 1. Statistical distributions (non-normalised) of relative humidity wrt ice inside (dashed

line) and outside (dotted line) clouds, and the sum of both (solid line), obtained from INCA

measurements. Obviously the bulge in the “sum” distribution originates from measurements

inside clouds. It should also be noted that the slopes of the distributions at humidities above

ice saturation are similar.
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Fig. 2. Examples of some baseline fits.
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Fig. 3. Examples of the remaining bulges (or the difference distributions) after subtracting the

baseline fits in Fig. 2.
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Fig. 4. Non-normalised probability distribution of relative humidity over ice in tropospheric

tropical (south of 30
◦
N) MOZAIC data, after baseline subtraction for 4 pressure levels: (a)

190–209, (b) 210–230, (c) 231–245, (d) 246–270 hPa.

387



ACPD

4, 365–397, 2004

Relative humidity in

cirrus clouds

P. Spichtinger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

-50

0

50

100

150

200

250

300

60 70 80 90 100 110 120 130 140 150 160

n
u

m
b

e
r 

o
f 

e
v
e

n
ts

relative humidity wrt ice (%)

b)

Fig. 4. Continued.
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Fig. 4. Continued.
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Fig. 4. Continued.
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Fig. 5. Non-normalised probability distribution of relative humidity over ice in tropospheric

extratropical (north of 30
◦
N) MOZAIC data, after baseline subtraction: (a) total data, (b) class

K1 (−55 ≤ T ≤ −50
◦
C), (c) class K2 (−50 ≤ T ≤ −45

◦
C).
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Fig. 5. Continued.
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Fig. 5. Continued.
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Fig. 6. L-skewness of the difference distributions for the tropospheric MOZAIC data (error bars,

see also Sect. 3.1 and Table 1) and the INCA data (circles, see also Sect. 3.2). Additionally, the

L-skewness of a Gaussian distribution (without and with a perturbation of 5% of the maximum

at 150%) in the range 70–150% RHi are shown. These values can be used to distinguish

between symmetric and asymmetric distributions. The crosses represent the L-skewnesses

resulting from the two numerical experiments of Sect. 4.
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Fig. 7. Non-normalised probability distributions of relative humidity over ice, after baseline

subtraction for tropospheric MLS data: (a) tropical (south of 30
◦
N) MLS data on pressure

levels 147 (solid) and 215 hPa (dashed) (b) extratropical northern hemispheric (north of 30
◦
N,

solid) and southern hemispheric (south of 30
◦
S, dashed) MLS data on pressure level 215 hPa.

Because of cloud clearing there remains after baseline subtraction only a flat distribution of

noise along the zero line.
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Fig. 7. Continued.
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Fig. 8. Simulation of statistical distributions of relative humidity in warm (RHihom = 140% RHi ,
1600 steps) and cold (RHihom = 160% RHi , 800 steps) cirrus clouds.
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