000034882 001__ 34882
000034882 005__ 20240712100816.0
000034882 0247_ $$2WOS$$aWOS:000221380000003
000034882 0247_ $$2Handle$$a2128/635
000034882 037__ $$aPreJuSER-34882
000034882 041__ $$aeng
000034882 082__ $$a550
000034882 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000034882 1001_ $$0P:(DE-HGF)0$$aRöckmann, T.$$b0
000034882 245__ $$aThe impact of anthropogenic chlorine emissions, stratospheric ozone change and chemical feedbacks on stratospheric water
000034882 260__ $$aKatlenburg-Lindau$$bEGU$$c2004
000034882 300__ $$a693 -699
000034882 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000034882 3367_ $$2DataCite$$aOutput Types/Journal article
000034882 3367_ $$00$$2EndNote$$aJournal Article
000034882 3367_ $$2BibTeX$$aARTICLE
000034882 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000034882 3367_ $$2DRIVER$$aarticle
000034882 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v4$$x1680-7316
000034882 500__ $$aRecord converted from VDB: 12.11.2012
000034882 520__ $$aMixing ratios of water (H2O) in the stratosphere appear to increase due to increased input of H2O and methane from the troposphere and due to intensified oxidation of CH4 in the stratosphere, but many of the underlying mechanisms are not yet understood. Here we identify and quantify three chemical mechanisms which must have led to more efficient oxidation of CH4 in the stratosphere over the past several decades: 1) The increase in stratospheric chlorine levels due to anthropogenic CFC emissions, 2) the thinning of the stratospheric ozone column and 3) enhanced OH levels in the stratosphere due to increasing H2O levels themselves. In combination with the increase in tropospheric CH4 mixing ratios and with solar cycle related variations of upper stratospheric ozone, these effects can explain about 50% of the additional conversion of CH4 to H2O as observed throughout the stratosphere. The relative contributions from the individual processes have varied over the past decades.
000034882 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000034882 588__ $$aDataset connected to Web of Science
000034882 650_7 $$2WoSType$$aJ
000034882 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J. U.$$b1$$uFZJ
000034882 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b2$$uFZJ
000034882 773__ $$0PERI:(DE-600)2069847-1$$gVol. 4, p. 693 -699$$p693 -699$$q4<693 -699$$tAtmospheric chemistry and physics$$v4$$x1680-7316$$y2004
000034882 8564_ $$uhttps://juser.fz-juelich.de/record/34882/files/R%C3%B6ckmann_2004.Theimpact.pdf$$yOpenAccess
000034882 909CO $$ooai:juser.fz-juelich.de:34882$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000034882 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000034882 9141_ $$y2004
000034882 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000034882 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000034882 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000034882 970__ $$aVDB:(DE-Juel1)40887
000034882 9801_ $$aFullTexts
000034882 980__ $$aVDB
000034882 980__ $$aJUWEL
000034882 980__ $$aConvertedRecord
000034882 980__ $$ajournal
000034882 980__ $$aI:(DE-Juel1)IEK-7-20101013
000034882 980__ $$aUNRESTRICTED
000034882 980__ $$aFullTexts
000034882 981__ $$aI:(DE-Juel1)ICE-4-20101013
000034882 981__ $$aI:(DE-Juel1)IEK-7-20101013