000034883 001__ 34883
000034883 005__ 20240712100830.0
000034883 0247_ $$2DOI$$a10.1029/2003JD003792
000034883 0247_ $$2WOS$$aWOS:000188867500001
000034883 0247_ $$2ISSN$$a0141-8637
000034883 0247_ $$2Handle$$a2128/7640
000034883 037__ $$aPreJuSER-34883
000034883 041__ $$aeng
000034883 082__ $$a550
000034883 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000034883 1001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b0$$uFZJ
000034883 245__ $$aMixing and Ozone Loss in the 1999-2000 Arctic Vortex: Simulations with the 3-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS)
000034883 260__ $$aWashington, DC$$bUnion$$c2004
000034883 300__ $$aD02315
000034883 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000034883 3367_ $$2DataCite$$aOutput Types/Journal article
000034883 3367_ $$00$$2EndNote$$aJournal Article
000034883 3367_ $$2BibTeX$$aARTICLE
000034883 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000034883 3367_ $$2DRIVER$$aarticle
000034883 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v109$$x0148-0227
000034883 500__ $$aRecord converted from VDB: 12.11.2012
000034883 520__ $$a[1] The three-dimensional (3-D) formulation of the Chemical Lagrangian Model of the Stratosphere (CLaMS-3d) is presented that extends the isentropic version of CLaMS to cross-isentropic transport. The cross-isentropic velocities of the Lagrangian air parcels are calculated with a radiation module and by taking into account profiles of ozone and water vapor derived from a HALOE climatology. The 3-D extension of mixing maintains the most important feature of the 2-D version as mixing is mainly controlled by the horizontal deformations of the wind fields. In the 3-D version, mixing is additionally driven by the vertical shear in the flow. The impact of the intensity of mixing in the 3-D model formulation on simulated tracer distributions is elucidated by comparing observations of CH4, Halon-1211, and ozone from satellite, balloon, and ER-2 aircraft during the SOLVE/ THESEO-2000 campaign. CLaMS-3d simulations span the time period from early December 1999 to the middle of March 2000, with air parcels extending over the Northern Hemisphere in the vertical range between 350 and 1400 K. The adjustment of the CLaMS-3d mixing parameters to optimize agreement with observations was obtained for strongly inhomogeneous, deformation-induced mixing that affects only about 10% of the air parcels per day. The optimal choice of the aspect ratio a defining the ratio of the mean horizontal and vertical separation between the air parcels was determined to be 250 for model configuration with a horizontal resolution r(0) = 100 km. By transporting ozone in CLaMS-3d as a passive tracer, the chemical ozone loss was inferred as the difference between the observed and simulated ozone profiles. The results show, in agreement with previous studies, a substantial ozone loss between 380 and 520 K with a maximum loss at 460 K of about 1.9 ppmv, i.e., of over 60% locally, from December to the middle of March 2000. During this period, the impact of isentropic mixing across the vortex edge outweighs the effect of the spatially inhomogeneous ( differential) descent on the tracer/ ozone correlations in the vortex. Mixing into the vortex shifts the early winter reference tracer/ ozone correlation to higher values, which may lead to an underestimate of chemical ozone loss, on average by 0.4 and 0.1 ppmv in the entire vortex and the vortex core, respectively.
000034883 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000034883 588__ $$aDataset connected to Web of Science
000034883 65320 $$2Author$$astratosphere
000034883 65320 $$2Author$$aLagrangian transport
000034883 65320 $$2Author$$amixing
000034883 65320 $$2Author$$aozone loss
000034883 65320 $$2Author$$aSOLVE/THESEO 2000
000034883 65320 $$2Author$$aCLaMS
000034883 650_7 $$2WoSType$$aJ
000034883 7001_ $$0P:(DE-Juel1)VDB17032$$aSteinhorst, H.-M.$$b1$$uFZJ
000034883 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b2$$uFZJ
000034883 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b3$$uFZJ
000034883 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b4$$uFZJ
000034883 7001_ $$0P:(DE-HGF)0$$aElkins, J. W.$$b5
000034883 7001_ $$0P:(DE-HGF)0$$aJost, H. J.$$b6
000034883 7001_ $$0P:(DE-HGF)0$$aRichard, E.$$b7
000034883 7001_ $$0P:(DE-HGF)0$$aSchmidt, U.$$b8
000034883 7001_ $$0P:(DE-HGF)0$$aToon, G.$$b9
000034883 7001_ $$0P:(DE-HGF)0$$aMcKenna, D. S.$$b10
000034883 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2003JD003792$$gVol. 109, p. D02315$$pD02315$$q109<D02315$$tJournal of geophysical research / Atmospheres$$tJournal of Geophysical Research$$v109$$x0148-0227$$y2004
000034883 8567_ $$uhttp://hdl.handle.net/2128/618$$uhttp://dx.doi.org/10.1029/2003JD003792
000034883 8564_ $$uhttps://juser.fz-juelich.de/record/34883/files/Konopka_2004.Mixing.pdf$$yOpenAccess
000034883 8564_ $$uhttps://juser.fz-juelich.de/record/34883/files/Konopka_2004.Mixing.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000034883 8564_ $$uhttps://juser.fz-juelich.de/record/34883/files/Konopka_2004.Mixing.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000034883 8564_ $$uhttps://juser.fz-juelich.de/record/34883/files/Konopka_2004.Mixing.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000034883 909CO $$ooai:juser.fz-juelich.de:34883$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000034883 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000034883 9141_ $$y2004
000034883 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000034883 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000034883 970__ $$aVDB:(DE-Juel1)40906
000034883 9801_ $$aFullTexts
000034883 980__ $$aVDB
000034883 980__ $$aConvertedRecord
000034883 980__ $$ajournal
000034883 980__ $$aI:(DE-Juel1)IEK-7-20101013
000034883 980__ $$aUNRESTRICTED
000034883 980__ $$aFullTexts
000034883 981__ $$aI:(DE-Juel1)ICE-4-20101013
000034883 981__ $$aI:(DE-Juel1)IEK-7-20101013