001     3491
005     20240625095039.0
024 7 _ |2 DOI
|a 10.1103/PhysRevLett.101.266405
024 7 _ |2 WOS
|a WOS:000262247100057
037 _ _ |a PreJuSER-3491
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Pavarini, E.
|b 0
|u FZJ
|0 P:(DE-Juel1)130881
245 _ _ |a Mechanism for Orbital Ordering in KCuF3
260 _ _ |a College Park, Md.
|b APS
|c 2008
300 _ _ |a 266405
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review Letters
|x 0031-9007
|0 4925
|y 26
|v 101
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The Mott insulating perovskite KCuF3 is considered the archetype of an orbitally ordered system. By using the local-density approximation+dynamical mean-field theory method, we investigate the mechanism for orbital ordering in this material. We show that the purely electronic Kugel-Khomskii superexchange mechanism alone leads to a remarkably large transition temperature of T-KK similar to 350 K. However, orbital order is experimentally believed to persist to at least 800 K. Thus, Jahn-Teller distortions are essential for stabilizing orbital order at such high temperatures.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Koch, E.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB43156
700 1 _ |a Lichtenstein, A. I.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1103/PhysRevLett.101.266405
|g Vol. 101, p. 266405
|p 266405
|q 101<266405
|0 PERI:(DE-600)1472655-5
|t Physical review letters
|v 101
|y 2008
|x 0031-9007
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.101.266405
856 4 _ |u https://juser.fz-juelich.de/record/3491/files/FZJ-3491.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/3491/files/FZJ-3491.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/3491/files/FZJ-3491.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/3491/files/FZJ-3491.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:3491
|p open_access
|p driver
|p VDB
|p openaire
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |a Nachtrag
|y 2008
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |g IAS
|k IAS-3
|l Theoretische Nanoelektronik
|0 I:(DE-Juel1)IAS-3-20090406
|x 3
|z IFF-3
920 1 _ |d 31.12.2010
|g IFF
|k IFF-3
|l Theorie der Strukturbildung
|0 I:(DE-Juel1)VDB783
|x 4
970 _ _ |a VDB:(DE-Juel1)109562
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21