000035289 001__ 35289
000035289 005__ 20180210140615.0
000035289 0247_ $$2DOI$$a10.1002/pssa.200303966
000035289 0247_ $$2WOS$$aWOS:000188794900025
000035289 037__ $$aPreJuSER-35289
000035289 041__ $$aeng
000035289 082__ $$a530
000035289 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000035289 084__ $$2WoS$$aPhysics, Applied
000035289 084__ $$2WoS$$aPhysics, Condensed Matter
000035289 1001_ $$0P:(DE-HGF)0$$aSchelling, C.$$b0
000035289 245__ $$aKinetic and strain-driven growth phenomena on Si(001)
000035289 260__ $$aWeinheim$$bWiley-VCH$$c2004
000035289 300__ $$a324 - 328
000035289 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000035289 3367_ $$2DataCite$$aOutput Types/Journal article
000035289 3367_ $$00$$2EndNote$$aJournal Article
000035289 3367_ $$2BibTeX$$aARTICLE
000035289 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000035289 3367_ $$2DRIVER$$aarticle
000035289 440_0 $$04913$$aPhysica Status Solidi A$$v201$$x0031-8965
000035289 500__ $$aRecord converted from VDB: 12.11.2012
000035289 520__ $$aSelf-organization phenomena in semiconductors are usually based on strain-driven island growth during hetero epitaxial layer deposition. However, kinetic phenomena can become important and even dominating at the low growth temperatures usually employed during molecular beam epitaxy. We report on kinetic step bunching on Si(001), and identify the driving mechanism on the atomic scale via kinetic Monte Carlo simulations. Another phenomena discussed is facet formation during annealing of SiO2-covered Si(001) nanostructures at the relatively low temperatures usually employed for oxide desorption. Both phenomena are combined to facilitate perfect ordering of self-assembled Ge dots on facetted Si(001) nanostructure templates. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
000035289 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000035289 588__ $$aDataset connected to Web of Science
000035289 650_7 $$2WoSType$$aJ
000035289 7001_ $$0P:(DE-Juel1)VDB9864$$aMyslivecek, J.$$b1$$uFZJ
000035289 7001_ $$0P:(DE-HGF)0$$aMühlberger, M.$$b2
000035289 7001_ $$0P:(DE-HGF)0$$aLichtenberger, H.$$b3
000035289 7001_ $$0P:(DE-HGF)0$$aZhong, Z.$$b4
000035289 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b5$$uFZJ
000035289 7001_ $$0P:(DE-HGF)0$$aBauer, G.$$b6
000035289 7001_ $$0P:(DE-HGF)0$$aSchäffler, F.$$b7
000035289 773__ $$0PERI:(DE-600)1481091-8$$a10.1002/pssa.200303966$$gVol. 201, p. 324 - 328$$p324 - 328$$q201<324 - 328$$tPhysica status solidi / A$$v201$$x0031-8965$$y2004
000035289 8567_ $$uhttp://dx.doi.org/10.1002/pssa.200303966
000035289 909CO $$ooai:juser.fz-juelich.de:35289$$pVDB
000035289 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000035289 9141_ $$y2004
000035289 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000035289 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000035289 970__ $$aVDB:(DE-Juel1)42227
000035289 980__ $$aVDB
000035289 980__ $$aConvertedRecord
000035289 980__ $$ajournal
000035289 980__ $$aI:(DE-Juel1)PGI-3-20110106
000035289 980__ $$aUNRESTRICTED
000035289 981__ $$aI:(DE-Juel1)PGI-3-20110106