001     35289
005     20180210140615.0
024 7 _ |2 DOI
|a 10.1002/pssa.200303966
024 7 _ |2 WOS
|a WOS:000188794900025
037 _ _ |a PreJuSER-35289
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Schelling, C.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Kinetic and strain-driven growth phenomena on Si(001)
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2004
300 _ _ |a 324 - 328
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physica Status Solidi A
|x 0031-8965
|0 4913
|v 201
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Self-organization phenomena in semiconductors are usually based on strain-driven island growth during hetero epitaxial layer deposition. However, kinetic phenomena can become important and even dominating at the low growth temperatures usually employed during molecular beam epitaxy. We report on kinetic step bunching on Si(001), and identify the driving mechanism on the atomic scale via kinetic Monte Carlo simulations. Another phenomena discussed is facet formation during annealing of SiO2-covered Si(001) nanostructures at the relatively low temperatures usually employed for oxide desorption. Both phenomena are combined to facilitate perfect ordering of self-assembled Ge dots on facetted Si(001) nanostructure templates. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Myslivecek, J.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB9864
700 1 _ |a Mühlberger, M.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Lichtenberger, H.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Zhong, Z.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Voigtländer, B.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB5601
700 1 _ |a Bauer, G.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Schäffler, F.
|b 7
|0 P:(DE-HGF)0
773 _ _ |a 10.1002/pssa.200303966
|g Vol. 201, p. 324 - 328
|p 324 - 328
|q 201<324 - 328
|0 PERI:(DE-600)1481091-8
|t Physica status solidi / A
|v 201
|y 2004
|x 0031-8965
856 7 _ |u http://dx.doi.org/10.1002/pssa.200303966
909 C O |o oai:juser.fz-juelich.de:35289
|p VDB
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)42227
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21