000000353 001__ 353
000000353 005__ 20200423202311.0
000000353 0247_ $$2pmid$$apmid:19143992
000000353 0247_ $$2DOI$$a10.1111/j.1365-3040.2009.01931.x
000000353 0247_ $$2WOS$$aWOS:000263910800005
000000353 037__ $$aPreJuSER-353
000000353 041__ $$aeng
000000353 082__ $$a570
000000353 084__ $$2WoS$$aPlant Sciences
000000353 1001_ $$0P:(DE-Juel1)VDB63505$$aMenzel, M. I.$$b0$$uFZJ
000000353 245__ $$aNon-Invasive Determination of Plant Biomass with Microwave Resonators
000000353 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2009
000000353 300__ $$a368 - 379
000000353 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000353 3367_ $$2DataCite$$aOutput Types/Journal article
000000353 3367_ $$00$$2EndNote$$aJournal Article
000000353 3367_ $$2BibTeX$$aARTICLE
000000353 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000353 3367_ $$2DRIVER$$aarticle
000000353 440_0 $$04976$$aPlant, Cell and Environment$$v32$$x0140-7791
000000353 500__ $$aThe authors recognize and appreciate support through funding by Technology Transfer Department, Forschungszentrum Julich and support through providing a miniaturized electronic module by Julicher SQUID GmbH.
000000353 520__ $$aNon-invasive and rapid determination of plant biomass would be beneficial for a number of research aims. Here, we present a novel device to non-invasively determine plant water content as a proxy for plant biomass. It is based on changes of dielectric properties inside a microwave cavity resonator induced by inserted plant material. The water content of inserted shoots leads to a discrete shift in the centre frequency of the resonator. Calibration measurements with pure water showed good spatial homogeneity in the detection volume of the microwave resonators and clear correlations between water content and centre frequency shift. For cut tomato and tobacco shoots, linear correlations between fresh weight and centre frequency shift were established. These correlations were used to continuously monitor diel growth patterns of intact plants and to determine biomass increase over several days. Interferences from soil and root water were excluded by shielding pots with copper. The presented proof of principle shows that microwave resonators are promising tools to quantitatively detect the water content of plants and to determine plant biomass. As the method is non-invasive, integrative and fast, it provides the opportunity for detailed, dynamic analyses of plant growth, water status and phenotype.
000000353 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000000353 588__ $$aDataset connected to Web of Science, Pubmed
000000353 650_2 $$2MeSH$$aBiomass
000000353 650_2 $$2MeSH$$aMicrowaves
000000353 650_2 $$2MeSH$$aPlant Shoots: chemistry
000000353 650_2 $$2MeSH$$aPlants: chemistry
000000353 650_2 $$2MeSH$$aPlants: growth & development
000000353 650_2 $$2MeSH$$aWater: analysis
000000353 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000000353 650_7 $$2WoSType$$aJ
000000353 65320 $$2Author$$abiomass
000000353 65320 $$2Author$$acavity resonator
000000353 65320 $$2Author$$adielectric properties
000000353 65320 $$2Author$$amicrowave
000000353 65320 $$2Author$$anon-invasive analysis
000000353 65320 $$2Author$$awater content
000000353 7001_ $$0P:(DE-Juel1)VDB74003$$aTittmann, S.$$b1$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)5963$$aBühler, J.$$b2$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)VDB76398$$aPreis, St.$$b3$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)VDB5403$$aWolters, N.$$b4$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)129336$$aJahnke, S.$$b5$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b6$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)129303$$aChlubek, A.$$b7$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)VDB76399$$aLeon, A.$$b8$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)129470$$aHermes, N.$$b9$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, A.$$b10$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)VDB461$$aGilmer, F.$$b11$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)VDB49819$$aBlümler, P.$$b12$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b13$$uFZJ
000000353 7001_ $$0P:(DE-Juel1)128697$$aKrause, H.-J.$$b14$$uFZJ
000000353 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/j.1365-3040.2009.01931.x$$gVol. 32, p. 368 - 379$$p368 - 379$$q32<368 - 379$$tPlant, cell & environment$$v32$$x0140-7791$$y2009
000000353 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-3040.2009.01931.x
000000353 8564_ $$uhttps://juser.fz-juelich.de/record/353/files/FZJ-353.pdf$$yRestricted$$zPublished final document.
000000353 909CO $$ooai:juser.fz-juelich.de:353$$pVDB
000000353 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000000353 9141_ $$y2009
000000353 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000353 9201_ $$0I:(DE-Juel1)IBN-2-20090406$$d31.12.2010$$gIBN$$kIBN-2$$lBioelektronik$$x1
000000353 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x2
000000353 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x3
000000353 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x4
000000353 970__ $$aVDB:(DE-Juel1)100660
000000353 980__ $$aVDB
000000353 980__ $$aConvertedRecord
000000353 980__ $$ajournal
000000353 980__ $$aI:(DE-Juel1)IBN-2-20090406
000000353 980__ $$aI:(DE-Juel1)IBG-2-20101118
000000353 980__ $$aI:(DE-Juel1)IBG-3-20101118
000000353 980__ $$aI:(DE-82)080009_20140620
000000353 980__ $$aUNRESTRICTED
000000353 981__ $$aI:(DE-Juel1)IBG-2-20101118
000000353 981__ $$aI:(DE-Juel1)IBG-3-20101118
000000353 981__ $$aI:(DE-Juel1)VDB881