001     353
005     20200423202311.0
024 7 _ |2 pmid
|a pmid:19143992
024 7 _ |2 DOI
|a 10.1111/j.1365-3040.2009.01931.x
024 7 _ |2 WOS
|a WOS:000263910800005
037 _ _ |a PreJuSER-353
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Menzel, M. I.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB63505
245 _ _ |a Non-Invasive Determination of Plant Biomass with Microwave Resonators
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2009
300 _ _ |a 368 - 379
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Plant, Cell and Environment
|x 0140-7791
|0 4976
|v 32
500 _ _ |a The authors recognize and appreciate support through funding by Technology Transfer Department, Forschungszentrum Julich and support through providing a miniaturized electronic module by Julicher SQUID GmbH.
520 _ _ |a Non-invasive and rapid determination of plant biomass would be beneficial for a number of research aims. Here, we present a novel device to non-invasively determine plant water content as a proxy for plant biomass. It is based on changes of dielectric properties inside a microwave cavity resonator induced by inserted plant material. The water content of inserted shoots leads to a discrete shift in the centre frequency of the resonator. Calibration measurements with pure water showed good spatial homogeneity in the detection volume of the microwave resonators and clear correlations between water content and centre frequency shift. For cut tomato and tobacco shoots, linear correlations between fresh weight and centre frequency shift were established. These correlations were used to continuously monitor diel growth patterns of intact plants and to determine biomass increase over several days. Interferences from soil and root water were excluded by shielding pots with copper. The presented proof of principle shows that microwave resonators are promising tools to quantitatively detect the water content of plants and to determine plant biomass. As the method is non-invasive, integrative and fast, it provides the opportunity for detailed, dynamic analyses of plant growth, water status and phenotype.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Biomass
650 _ 2 |2 MeSH
|a Microwaves
650 _ 2 |2 MeSH
|a Plant Shoots: chemistry
650 _ 2 |2 MeSH
|a Plants: chemistry
650 _ 2 |2 MeSH
|a Plants: growth & development
650 _ 2 |2 MeSH
|a Water: analysis
650 _ 7 |0 7732-18-5
|2 NLM Chemicals
|a Water
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a biomass
653 2 0 |2 Author
|a cavity resonator
653 2 0 |2 Author
|a dielectric properties
653 2 0 |2 Author
|a microwave
653 2 0 |2 Author
|a non-invasive analysis
653 2 0 |2 Author
|a water content
700 1 _ |a Tittmann, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB74003
700 1 _ |a Bühler, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)5963
700 1 _ |a Preis, St.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB76398
700 1 _ |a Wolters, N.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB5403
700 1 _ |a Jahnke, S.
|b 5
|u FZJ
|0 P:(DE-Juel1)129336
700 1 _ |a Walter, A.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB2595
700 1 _ |a Chlubek, A.
|b 7
|u FZJ
|0 P:(DE-Juel1)129303
700 1 _ |a Leon, A.
|b 8
|u FZJ
|0 P:(DE-Juel1)VDB76399
700 1 _ |a Hermes, N.
|b 9
|u FZJ
|0 P:(DE-Juel1)129470
700 1 _ |a Offenhäusser, A.
|b 10
|u FZJ
|0 P:(DE-Juel1)128713
700 1 _ |a Gilmer, F.
|b 11
|u FZJ
|0 P:(DE-Juel1)VDB461
700 1 _ |a Blümler, P.
|b 12
|u FZJ
|0 P:(DE-Juel1)VDB49819
700 1 _ |a Schurr, U.
|b 13
|u FZJ
|0 P:(DE-Juel1)129402
700 1 _ |a Krause, H.-J.
|b 14
|u FZJ
|0 P:(DE-Juel1)128697
773 _ _ |a 10.1111/j.1365-3040.2009.01931.x
|g Vol. 32, p. 368 - 379
|p 368 - 379
|q 32<368 - 379
|0 PERI:(DE-600)2020843-1
|t Plant, cell & environment
|v 32
|y 2009
|x 0140-7791
856 7 _ |u http://dx.doi.org/10.1111/j.1365-3040.2009.01931.x
856 4 _ |u https://juser.fz-juelich.de/record/353/files/FZJ-353.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:353
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-2
|l Bioelektronik
|0 I:(DE-Juel1)IBN-2-20090406
|x 1
920 1 _ |d 31.10.2010
|g ICG
|k ICG-3
|l Phytosphäre
|0 I:(DE-Juel1)ICG-3-20090406
|x 2
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 4
970 _ _ |a VDB:(DE-Juel1)100660
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBN-2-20090406
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21