000035467 001__ 35467
000035467 005__ 20190625111633.0
000035467 0247_ $$2DOI$$a10.1071/FP04058
000035467 0247_ $$2WOS$$aWOS:000224481200005
000035467 0247_ $$2altmetric$$aaltmetric:1475076
000035467 037__ $$aPreJuSER-35467
000035467 041__ $$aeng
000035467 082__ $$a580
000035467 084__ $$2WoS$$aPlant Sciences
000035467 1001_ $$0P:(DE-HGF)0$$aGould, N.$$b0
000035467 245__ $$aDirect measurement of sieve element hydrostatic pressure reveal strong regulation of sieve element hydrostatic pressure after pathway blockage
000035467 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2004
000035467 300__ $$a987 - 993
000035467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000035467 3367_ $$2DataCite$$aOutput Types/Journal article
000035467 3367_ $$00$$2EndNote$$aJournal Article
000035467 3367_ $$2BibTeX$$aARTICLE
000035467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000035467 3367_ $$2DRIVER$$aarticle
000035467 440_0 $$09141$$aFunctional Plant Biology$$v31$$x1445-4408
000035467 500__ $$aRecord converted from VDB: 12.11.2012
000035467 520__ $$aAccording to the Munch hypothesis, solution flow through the phloem is driven by a hydrostatic pressure gradient. At the source, a high hydrostatic pressure is generated in the collection phloem by active loading of solutes, which causes a concomitant passive flow of water, generating a high turgor pressure. At the sink, solute unloading from the phloem keeps the turgor pressure low, generating a source-to-sink hydrostatic pressure gradient. Localised changes in loading and unloading of solutes along the length of the transport phloem can compensate for small, short-term changes in phloem loading at the source, and thus, maintain phloem flow to the sink tissue. We tested directly the hydrostatic pressure regulation of the sieve tube by relating changes in sieve tube hydrostatic pressure to changes in solute flow through the sieve tube. A sudden phloem blockage was induced ( by localised chilling of a 1-cm length of stem tissue) while sieve-tube-sap osmotic pressure, sucrose concentration, hydrostatic pressure and flow of recent photosynthate were observed in vivo both upstream and downstream of the block. The results are discussed in relation to the Munch hypothesis of solution flow, sieve tube hydrostatic pressure regulation and the mechanism behind the cold-block phenomenon.
000035467 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000035467 588__ $$aDataset connected to Web of Science
000035467 650_7 $$2WoSType$$aJ
000035467 65320 $$2Author$$aaphid stylectomy
000035467 65320 $$2Author$$achilling response
000035467 65320 $$2Author$$aphloem pressure probe
000035467 65320 $$2Author$$asingle-cell sampling
000035467 65320 $$2Author$$aC-11
000035467 7001_ $$0P:(DE-Juel1)VDB23736$$aMinchin, P. E. H.$$b1$$uFZJ
000035467 7001_ $$0P:(DE-HGF)0$$aThorpe, M. R.$$b2
000035467 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP04058$$gVol. 31, p. 987 - 993$$p987 - 993$$q31<987 - 993$$tFunctional plant biology$$v31$$x1445-4408$$y2004
000035467 8567_ $$uhttp://dx.doi.org/10.1071/FP04058
000035467 909CO $$ooai:juser.fz-juelich.de:35467$$pVDB
000035467 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000035467 9141_ $$y2004
000035467 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000035467 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000035467 970__ $$aVDB:(DE-Juel1)42733
000035467 980__ $$aVDB
000035467 980__ $$aConvertedRecord
000035467 980__ $$ajournal
000035467 980__ $$aI:(DE-Juel1)IBG-2-20101118
000035467 980__ $$aUNRESTRICTED
000035467 981__ $$aI:(DE-Juel1)IBG-2-20101118
000035467 981__ $$aI:(DE-Juel1)ICG-3-20090406