001     35467
005     20190625111633.0
024 7 _ |2 DOI
|a 10.1071/FP04058
024 7 _ |2 WOS
|a WOS:000224481200005
024 7 _ |a altmetric:1475076
|2 altmetric
037 _ _ |a PreJuSER-35467
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Gould, N.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Direct measurement of sieve element hydrostatic pressure reveal strong regulation of sieve element hydrostatic pressure after pathway blockage
260 _ _ |a Collingwood, Victoria
|b CSIRO Publ.
|c 2004
300 _ _ |a 987 - 993
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Functional Plant Biology
|x 1445-4408
|0 9141
|v 31
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a According to the Munch hypothesis, solution flow through the phloem is driven by a hydrostatic pressure gradient. At the source, a high hydrostatic pressure is generated in the collection phloem by active loading of solutes, which causes a concomitant passive flow of water, generating a high turgor pressure. At the sink, solute unloading from the phloem keeps the turgor pressure low, generating a source-to-sink hydrostatic pressure gradient. Localised changes in loading and unloading of solutes along the length of the transport phloem can compensate for small, short-term changes in phloem loading at the source, and thus, maintain phloem flow to the sink tissue. We tested directly the hydrostatic pressure regulation of the sieve tube by relating changes in sieve tube hydrostatic pressure to changes in solute flow through the sieve tube. A sudden phloem blockage was induced ( by localised chilling of a 1-cm length of stem tissue) while sieve-tube-sap osmotic pressure, sucrose concentration, hydrostatic pressure and flow of recent photosynthate were observed in vivo both upstream and downstream of the block. The results are discussed in relation to the Munch hypothesis of solution flow, sieve tube hydrostatic pressure regulation and the mechanism behind the cold-block phenomenon.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a aphid stylectomy
653 2 0 |2 Author
|a chilling response
653 2 0 |2 Author
|a phloem pressure probe
653 2 0 |2 Author
|a single-cell sampling
653 2 0 |2 Author
|a C-11
700 1 _ |a Minchin, P. E. H.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB23736
700 1 _ |a Thorpe, M. R.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1071/FP04058
|g Vol. 31, p. 987 - 993
|p 987 - 993
|q 31<987 - 993
|0 PERI:(DE-600)1496158-1
|t Functional plant biology
|v 31
|y 2004
|x 1445-4408
856 7 _ |u http://dx.doi.org/10.1071/FP04058
909 C O |o oai:juser.fz-juelich.de:35467
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-III
|l Phytosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB49
|x 0
970 _ _ |a VDB:(DE-Juel1)42733
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21