001     3601
005     20180208231412.0
024 7 _ |2 DOI
|a 10.1016/j.advwatres.2008.06.009
024 7 _ |2 WOS
|a WOS:000264512000004
037 _ _ |a PreJuSER-3601
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Water Resources
100 1 _ |0 P:(DE-Juel1)129472
|a Huisman, J. A.
|b 0
|u FZJ
245 _ _ |a Assessing the Impact of Land use Change on Hydrology by Ensemble Modelling (LUCHEM) III: scenario analysis
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2009
300 _ _ |a 159 - 170
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 20263
|a Advances in Water Resources
|v 32
|x 0309-1708
|y 2
500 _ _ |a This study has been supported by the Deutsche Forschungsgemeinschaft within the scope of the Collaborative Research Centre (SFB) 299. A special thank goes to Bernd Weinmann for his efforts with the ProLand land use change scenarios.
520 _ _ |a An ensemble of 10 hydrological models was applied to the same set of land use change scenarios. There was general agreement about the direction of changes in the mean annual discharge and 90% discharge percentile predicted by the ensemble members, although a considerable range in the magnitude of predictions for the scenarios and catchments under consideration was obvious. Differences in the magnitude of the increase were attributed to the different mean annual actual evapotranspiration rates for each land use type. The ensemble of model runs was further analyzed with deterministic and probabilistic ensemble methods. The deterministic ensemble method based on a trimmed mean resulted in a single somewhat more reliable scenario prediction. The probabilistic reliability ensemble averaging (REA) method allowed a quantification of the model structure uncertainty in the scenario predictions. It was concluded that the use of a model ensemble has greatly increased our confidence in the reliability of the model predictions. (C) 2008 Elsevier Ltd. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Model intercomparison
653 2 0 |2 Author
|a Land use change
653 2 0 |2 Author
|a Reliability ensemble averaging (REA)
653 2 0 |2 Author
|a Ensemble modeling
700 1 _ |0 P:(DE-HGF)0
|a Breuer, L.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bormann, H.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Bronstert, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Croke, B.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Frede, H.-G.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Gräff, T.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Hubrechts, L.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Jakeman, A.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Kite, G.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Lanini, J.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Leavesley, G.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Lettenmaier, D.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Lindström, G.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Seibert, J.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Sivapalan, M.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Viney, N.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Willems, P.
|b 17
773 _ _ |0 PERI:(DE-600)2023320-6
|a 10.1016/j.advwatres.2008.06.009
|g Vol. 32, p. 159 - 170
|p 159 - 170
|q 32<159 - 170
|t Advances in water resources
|v 32
|x 0309-1708
|y 2009
856 7 _ |u http://dx.doi.org/10.1016/j.advwatres.2008.06.009
909 C O |o oai:juser.fz-juelich.de:3601
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK407
|a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB793
|d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|x 1
970 _ _ |a VDB:(DE-Juel1)109801
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21