000036935 001__ 36935
000036935 005__ 20200423203724.0
000036935 0247_ $$2pmid$$apmid:15574911
000036935 0247_ $$2pmc$$apmc:PMC535176
000036935 0247_ $$2DOI$$a10.1128/AEM.70.12.7148-7155.2004
000036935 0247_ $$2WOS$$aWOS:000225719300026
000036935 0247_ $$2Handle$$a2128/2418
000036935 037__ $$aPreJuSER-36935
000036935 041__ $$aeng
000036935 082__ $$a570
000036935 084__ $$2WoS$$aBiotechnology & Applied Microbiology
000036935 084__ $$2WoS$$aMicrobiology
000036935 1001_ $$0P:(DE-Juel1)VDB1145$$aNetzer, R.$$b0$$uFZJ
000036935 245__ $$aCo-metabolism of a Non-Growth Substrate: L-Serine Utilization by Corynebacterium glutamicum
000036935 260__ $$aWashington, DC [u.a.]$$bSoc.$$c2004
000036935 300__ $$a7148 - 7155
000036935 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000036935 3367_ $$2DataCite$$aOutput Types/Journal article
000036935 3367_ $$00$$2EndNote$$aJournal Article
000036935 3367_ $$2BibTeX$$aARTICLE
000036935 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000036935 3367_ $$2DRIVER$$aarticle
000036935 440_0 $$08561$$aApplied and Environmental Microbiology$$v70$$x0099-2240
000036935 500__ $$aRecord converted from VDB: 12.11.2012
000036935 520__ $$aDespite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.
000036935 536__ $$0G:(DE-Juel1)FUEK256$$2G:(DE-HGF)$$aBiotechnologie$$cL02$$x0
000036935 588__ $$aDataset connected to Web of Science, Pubmed
000036935 650_2 $$2MeSH$$aBacterial Proteins: genetics
000036935 650_2 $$2MeSH$$aBacterial Proteins: metabolism
000036935 650_2 $$2MeSH$$aCarbon Isotopes: metabolism
000036935 650_2 $$2MeSH$$aCorynebacterium glutamicum: growth & development
000036935 650_2 $$2MeSH$$aCorynebacterium glutamicum: metabolism
000036935 650_2 $$2MeSH$$aCulture Media
000036935 650_2 $$2MeSH$$aGene Deletion
000036935 650_2 $$2MeSH$$aGlucose: metabolism
000036935 650_2 $$2MeSH$$aL-Serine Dehydratase: genetics
000036935 650_2 $$2MeSH$$aL-Serine Dehydratase: metabolism
000036935 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy
000036935 650_2 $$2MeSH$$aOligonucleotide Array Sequence Analysis
000036935 650_2 $$2MeSH$$aSerine: metabolism
000036935 650_7 $$00$$2NLM Chemicals$$aBacterial Proteins
000036935 650_7 $$00$$2NLM Chemicals$$aCarbon Isotopes
000036935 650_7 $$00$$2NLM Chemicals$$aCulture Media
000036935 650_7 $$050-99-7$$2NLM Chemicals$$aGlucose
000036935 650_7 $$056-45-1$$2NLM Chemicals$$aSerine
000036935 650_7 $$0EC 4.3.1.17$$2NLM Chemicals$$aL-Serine Dehydratase
000036935 650_7 $$2WoSType$$aJ
000036935 7001_ $$0P:(DE-Juel1)VDB1238$$aPeters-Wendisch, P.$$b1$$uFZJ
000036935 7001_ $$0P:(DE-Juel1)VDB57928$$aEggeling, L.$$b2$$uFZJ
000036935 7001_ $$0P:(DE-Juel1)128985$$aSahm, H.$$b3$$uFZJ
000036935 773__ $$0PERI:(DE-600)1478346-0$$a10.1128/AEM.70.12.7148-7155.2004$$gVol. 70, p. 7148 - 7155$$p7148 - 7155$$q70<7148 - 7155$$tApplied and environmental microbiology$$v70$$x0099-2240$$y2004
000036935 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC535176
000036935 8564_ $$uhttps://juser.fz-juelich.de/record/36935/files/44999.pdf$$yOpenAccess
000036935 8564_ $$uhttps://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000036935 8564_ $$uhttps://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000036935 8564_ $$uhttps://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000036935 909CO $$ooai:juser.fz-juelich.de:36935$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000036935 9131_ $$0G:(DE-Juel1)FUEK256$$bLeben$$kL02$$lBiotechnologie$$vBiotechnologie$$x0
000036935 9141_ $$y2004
000036935 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000036935 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000036935 9201_ $$0I:(DE-Juel1)VDB55$$gIBT$$kIBT-1$$lBiotechnologie 1$$x0$$zab 31.10.10 weitergeführt als IBG-1
000036935 970__ $$aVDB:(DE-Juel1)44999
000036935 980__ $$aVDB
000036935 980__ $$aJUWEL
000036935 980__ $$aConvertedRecord
000036935 980__ $$ajournal
000036935 980__ $$aI:(DE-Juel1)IBG-1-20101118
000036935 980__ $$aUNRESTRICTED
000036935 980__ $$aFullTexts
000036935 9801_ $$aFullTexts
000036935 981__ $$aI:(DE-Juel1)IBG-1-20101118