| Home > Publications database > Co-metabolism of a Non-Growth Substrate: L-Serine Utilization by Corynebacterium glutamicum > print |
| 001 | 36935 | ||
| 005 | 20200423203724.0 | ||
| 024 | 7 | _ | |a pmid:15574911 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC535176 |2 pmc |
| 024 | 7 | _ | |a 10.1128/AEM.70.12.7148-7155.2004 |2 DOI |
| 024 | 7 | _ | |a WOS:000225719300026 |2 WOS |
| 024 | 7 | _ | |a 2128/2418 |2 Handle |
| 037 | _ | _ | |a PreJuSER-36935 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 570 |
| 084 | _ | _ | |2 WoS |a Biotechnology & Applied Microbiology |
| 084 | _ | _ | |2 WoS |a Microbiology |
| 100 | 1 | _ | |a Netzer, R. |b 0 |u FZJ |0 P:(DE-Juel1)VDB1145 |
| 245 | _ | _ | |a Co-metabolism of a Non-Growth Substrate: L-Serine Utilization by Corynebacterium glutamicum |
| 260 | _ | _ | |a Washington, DC [u.a.] |b Soc. |c 2004 |
| 300 | _ | _ | |a 7148 - 7155 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |a Applied and Environmental Microbiology |x 0099-2240 |0 8561 |v 70 |
| 500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
| 520 | _ | _ | |a Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation. |
| 536 | _ | _ | |a Biotechnologie |c L02 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK256 |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 2 | |2 MeSH |a Bacterial Proteins: genetics |
| 650 | _ | 2 | |2 MeSH |a Bacterial Proteins: metabolism |
| 650 | _ | 2 | |2 MeSH |a Carbon Isotopes: metabolism |
| 650 | _ | 2 | |2 MeSH |a Corynebacterium glutamicum: growth & development |
| 650 | _ | 2 | |2 MeSH |a Corynebacterium glutamicum: metabolism |
| 650 | _ | 2 | |2 MeSH |a Culture Media |
| 650 | _ | 2 | |2 MeSH |a Gene Deletion |
| 650 | _ | 2 | |2 MeSH |a Glucose: metabolism |
| 650 | _ | 2 | |2 MeSH |a L-Serine Dehydratase: genetics |
| 650 | _ | 2 | |2 MeSH |a L-Serine Dehydratase: metabolism |
| 650 | _ | 2 | |2 MeSH |a Magnetic Resonance Spectroscopy |
| 650 | _ | 2 | |2 MeSH |a Oligonucleotide Array Sequence Analysis |
| 650 | _ | 2 | |2 MeSH |a Serine: metabolism |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Bacterial Proteins |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Carbon Isotopes |
| 650 | _ | 7 | |0 0 |2 NLM Chemicals |a Culture Media |
| 650 | _ | 7 | |0 50-99-7 |2 NLM Chemicals |a Glucose |
| 650 | _ | 7 | |0 56-45-1 |2 NLM Chemicals |a Serine |
| 650 | _ | 7 | |0 EC 4.3.1.17 |2 NLM Chemicals |a L-Serine Dehydratase |
| 650 | _ | 7 | |a J |2 WoSType |
| 700 | 1 | _ | |a Peters-Wendisch, P. |b 1 |u FZJ |0 P:(DE-Juel1)VDB1238 |
| 700 | 1 | _ | |a Eggeling, L. |b 2 |u FZJ |0 P:(DE-Juel1)VDB57928 |
| 700 | 1 | _ | |a Sahm, H. |b 3 |u FZJ |0 P:(DE-Juel1)128985 |
| 773 | _ | _ | |a 10.1128/AEM.70.12.7148-7155.2004 |g Vol. 70, p. 7148 - 7155 |p 7148 - 7155 |q 70<7148 - 7155 |0 PERI:(DE-600)1478346-0 |t Applied and environmental microbiology |v 70 |y 2004 |x 0099-2240 |
| 856 | 7 | _ | |2 Pubmed Central |u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC535176 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/36935/files/44999.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:36935 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 913 | 1 | _ | |k L02 |v Biotechnologie |l Biotechnologie |b Leben |0 G:(DE-Juel1)FUEK256 |x 0 |
| 914 | 1 | _ | |y 2004 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
| 915 | _ | _ | |2 StatID |0 StatID:(DE-HGF)0510 |a OpenAccess |
| 920 | 1 | _ | |k IBT-1 |l Biotechnologie 1 |g IBT |z ab 31.10.10 weitergeführt als IBG-1 |0 I:(DE-Juel1)VDB55 |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)44999 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a JUWEL |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a FullTexts |
| 980 | 1 | _ | |a FullTexts |
| 981 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|