001     36935
005     20200423203724.0
024 7 _ |a pmid:15574911
|2 pmid
024 7 _ |a pmc:PMC535176
|2 pmc
024 7 _ |a 10.1128/AEM.70.12.7148-7155.2004
|2 DOI
024 7 _ |a WOS:000225719300026
|2 WOS
024 7 _ |a 2128/2418
|2 Handle
037 _ _ |a PreJuSER-36935
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biotechnology & Applied Microbiology
084 _ _ |2 WoS
|a Microbiology
100 1 _ |a Netzer, R.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1145
245 _ _ |a Co-metabolism of a Non-Growth Substrate: L-Serine Utilization by Corynebacterium glutamicum
260 _ _ |a Washington, DC [u.a.]
|b Soc.
|c 2004
300 _ _ |a 7148 - 7155
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied and Environmental Microbiology
|x 0099-2240
|0 8561
|v 70
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.
536 _ _ |a Biotechnologie
|c L02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK256
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Bacterial Proteins: genetics
650 _ 2 |2 MeSH
|a Bacterial Proteins: metabolism
650 _ 2 |2 MeSH
|a Carbon Isotopes: metabolism
650 _ 2 |2 MeSH
|a Corynebacterium glutamicum: growth & development
650 _ 2 |2 MeSH
|a Corynebacterium glutamicum: metabolism
650 _ 2 |2 MeSH
|a Culture Media
650 _ 2 |2 MeSH
|a Gene Deletion
650 _ 2 |2 MeSH
|a Glucose: metabolism
650 _ 2 |2 MeSH
|a L-Serine Dehydratase: genetics
650 _ 2 |2 MeSH
|a L-Serine Dehydratase: metabolism
650 _ 2 |2 MeSH
|a Magnetic Resonance Spectroscopy
650 _ 2 |2 MeSH
|a Oligonucleotide Array Sequence Analysis
650 _ 2 |2 MeSH
|a Serine: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Bacterial Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Carbon Isotopes
650 _ 7 |0 0
|2 NLM Chemicals
|a Culture Media
650 _ 7 |0 50-99-7
|2 NLM Chemicals
|a Glucose
650 _ 7 |0 56-45-1
|2 NLM Chemicals
|a Serine
650 _ 7 |0 EC 4.3.1.17
|2 NLM Chemicals
|a L-Serine Dehydratase
650 _ 7 |a J
|2 WoSType
700 1 _ |a Peters-Wendisch, P.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB1238
700 1 _ |a Eggeling, L.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB57928
700 1 _ |a Sahm, H.
|b 3
|u FZJ
|0 P:(DE-Juel1)128985
773 _ _ |a 10.1128/AEM.70.12.7148-7155.2004
|g Vol. 70, p. 7148 - 7155
|p 7148 - 7155
|q 70<7148 - 7155
|0 PERI:(DE-600)1478346-0
|t Applied and environmental microbiology
|v 70
|y 2004
|x 0099-2240
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC535176
856 4 _ |u https://juser.fz-juelich.de/record/36935/files/44999.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/36935/files/44999.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:36935
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k L02
|v Biotechnologie
|l Biotechnologie
|b Leben
|0 G:(DE-Juel1)FUEK256
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IBT-1
|l Biotechnologie 1
|g IBT
|z ab 31.10.10 weitergeführt als IBG-1
|0 I:(DE-Juel1)VDB55
|x 0
970 _ _ |a VDB:(DE-Juel1)44999
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBG-1-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21