001     37257
005     20200402205610.0
024 7 _ |2 DOI
|a 10.1016/S0014-5793(04)00193-0
024 7 _ |2 WOS
|a WOS:000221170600003
037 _ _ |a PreJuSER-37257
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
084 _ _ |2 WoS
|a Cell Biology
100 1 _ |a Klare, J. P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2004
300 _ _ |a 219 - 224
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a FEBS Letters
|x 0014-5793
|0 2052
|y 3
|v 564
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Archaebacterial photoreceptors mediate phototaxis by regulating cell motility through two-component signalling cascades. Homologs of this sensory pathway occur in all three kingdoms of life, most notably in enteric bacteria in which the chemotaxis has been extensively studied. Recent structural and functional studies on the sensory rhodopsin II/transducer complex mediating the photophobic response of Natronomonas pharaonis have yielded new insights into the mechanisms of signal transfer across the membrane. Electron paramagnetic resonance data and the atomic resolution structure of the receptor molecule in complex with the transmembrane segment of its cognate transducer provided a model for signal transfer from the receptor to the cytoplasmic side of the transducer. This mechanism might also be relevant for eubacterial chemoreceptor signalling. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
536 _ _ |a Neurowissenschaften
|c L01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK255
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a phoborhodopsin
653 2 0 |2 Author
|a phototaxis
653 2 0 |2 Author
|a chemotaxis
653 2 0 |2 Author
|a signal transduction
700 1 _ |a Gordeliy, V. I.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB482
700 1 _ |a Labahn, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB886
700 1 _ |a Büldt, G.
|b 3
|u FZJ
|0 P:(DE-Juel1)131957
700 1 _ |a Steinhoff, H.-J.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Engelhard, M.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/S0014-5793(04)00193-0
|g Vol. 564, p. 219 - 224
|p 219 - 224
|q 564<219 - 224
|0 PERI:(DE-600)1460391-3
|t FEBS letters
|v 564
|y 2004
|x 0014-5793
856 7 _ |u http://dx.doi.org/10.1016/S0014-5793(04)00193-0
909 C O |o oai:juser.fz-juelich.de:37257
|p VDB
913 1 _ |k L01
|v Neurowissenschaften
|l Funktion und Dysfunktion des Nervensystems
|b Leben
|0 G:(DE-Juel1)FUEK255
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBI-2
|l Biologische Strukturforschung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB58
|x 0
970 _ _ |a VDB:(DE-Juel1)45676
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21