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The major parallel programming models for scalable parallel architectures are the message
passing model and the shared memory model. This article outlines the main concepts of these

models as well as the industry standard programming interfaces MPI and OpenMP. To exploit

the potential performance of parallel computers, programs need to be carefully designed and

tuned. We will discuss design decisions for good performance as well as programming tools

that help the programmer in program tuning.

1 Introduction

Many applications like numerical simulations in industry and research as well as com-

mercial applications such as query processing, data mining, and multi-media applications

require more compute power than provided by sequential computers. Current hardware

architectures offering high performance do not only exploit parallelism within a single

processor via multiple CPU cores but also apply a medium to large number of processors

concurrently to a single computation. High-end parallel computers currently (2009) de-

liver up to 1 Petaflop/s (1015 floating point operations per second) and are developed and

exploited within the ASC (Advanced Simulation and Computing) program of the Depart-

ment of Energy in the USA and PRACE (Partnership for Advanced Computing in Europe)

in Europe. In addition, the current trend to multi-core processors also requires parallel

programming to fully exploit the compute power of the multiple cores.

This article concentrates on programming numerical applications on parallel computer

architectures introduced in Section 1.1. Parallelization of those applications centers around

selecting a decomposition of the data domain onto the processors such that the workload

is well balanced and the communication between processors is reduced (Section 1.2)4.

The parallel implementation is then based on either the message passing or the shared

memory model (Section 2). The standard programming interface for the message passing

model is MPI (Message Passing Interface)8–12, offering a complete set of communication

routines (Section 3). OpenMP13–15 is the standard for directive-based shared memory pro-

gramming and will be introduced in Section 4.

Since parallel programs exploit multiple threads of control, debugging is even more

complicated than for sequential programs. Section 5 outlines the main concepts of parallel

debuggers and presents TotalView21 and DDT3, the most widely available debuggers for

parallel programs.

Although the domain decomposition is key to good performance on parallel archi-

tectures, program efficiency also heavily depends on the implementation of the commu-

nication and synchronization required by the parallel algorithms and the implementation

techniques chosen for sequential kernels. Optimizing those aspects is very system depen-

dent and thus, an interactive tuning process consisting of measuring performance data and
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applying optimizations follows the initial coding of the application. The tuning process is

supported by programming model specific performance analysis tools. Section 6 presents

basic performance analysis techniques.

1.1 Parallel Architectures

A parallel computer or multi-processor system is a computer utilizing more than one pro-

cessor. A common way to classify parallel computers is to distinguish them by the way

how processors can access the system’s main memory because this influences heavily the

usage and programming of the system.

In a distributed memory architecture the system is composed out of single-processor

nodes with local memory. The most important characteristic of this architecture is that

access to the local memory is faster than to remote memory. It is the challenge for the

programmer to assign data to the processors such that most of the data accessed during

the computation are already in the node’s local memory. Two major classes of distributed

memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any special hardware

support to access another node’s local memory directly. The nodes are only con-

nected through a computer network. Processors obtain data from remote memory

only by exchanging messages over this network between processes on the requesting

and the supplying node. Computers in this class are sometimes also called Network
Of Workstations (NOW) or Clusters Of Workstations (COW).

Remote Memory Access (RMA) computers allow to access remote memory via special-

ized operations implemented by hardware, however the hardware does not provide a

global address space, i.e., a memory location is not determined via an address in a

shared linear address space but via a tuple consisting of the processor number and the

local address in the target processor’s address space.

The major advantage of distributed memory systems is their ability to scale to a very

large number of nodes. Today (2009), systems with more than 210,000 cores have been

built. The disadvantage is that such systems are very hard to program.

In contrast, a shared memory architecture provides (in hardware) a global address

space, i.e., all memory locations can be accessed via usual load and store operations. Ac-

cess to a remote location results in a copy of the appropriate cache line in the processor’s

cache. Therefore, such a system is much easier to program. However, shared memory sys-

tems can only be scaled to moderate numbers of processors, typically 64 or 128. Shared

memory systems are further classified according to the quality of the memory accesses:

Uniform Memory Access (UMA) computer systems feature one global shared memory
subsystem which is connected to the processors through a central bus or memory

switch. All of the memory is accessible to all processors in the same way. Such a

system is also often called Symmetrical Multi Processor (SMP).
Non Uniform Memory Access (NUMA) computers are more scalable by physically dis-

tributing the memory but still providing a hardware implemented global address

space. Therefore access to memory local or close to a processor is faster than to re-

mote memory. If such a system has additional hardwarewhich also ensures that multi-

ple copies of data stored in different cache lines of the processors is kept coherent, i.e.,
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the copies always do have the same value, then it is called a Cache-Coherent Non

Uniform Memory Access (ccNUMA) system. ccNUMA systems offer the abstrac-
tion of a shared linear address space resembling physically shared memory systems.

This abstraction simplifies the task of program development but does not necessarily

facilitate program tuning.

While most of the early parallel computers were simple single processor NORMA

systems, today’s large parallel systems are typically hybrid systems, i.e., shared memory

NUMA nodes with a moderate number of processors are connected together to form a

distributed memory cluster system.

1.2 Data Parallel Programming

Applications that scale to a large number of processors usually perform computations on

large data domains. For example, crash simulations are based on partial differential equa-

tions that are solved on a large finite element grid and molecular dynamics applications

simulate the behavior of a large number of particles. Other parallel applications apply lin-

ear algebra operations to large vectors and matrices. The elemental operations on each

object in the data domain can be executed in parallel by the available processors.

The scheduling of operations to processors is determined by a domain decomposition5

specified by the programmer. Processors execute those operations that determine new val-

ues for elements stored in local memory (owner-computes rule). While processors execute

an operation, they may need values from other processors. The domain decomposition has

thus to be chosen so that the distribution of operations is balanced and the communication

is minimized. The third goal is to optimize single node computation, i.e., to be able to

exploit the processor’s pipelines and the processor’s caches efficiently.

A good example for the design decisions taken when selecting a domain decomposition

is Gaussian elimination1. The main structure of the matrix during the steps of the algorithm

is outlined in Figure 1.

The goal of this algorithm is to eliminate all entries in the matrix below the main

diagonal. It starts at the top diagonal element and subtracts multiples of the first row from

the second and subsequent rows to end up with zeros in the first column. This operation

is repeated for all the rows. In later stages of the algorithm the actual computations have

to be done on rectangular sections of decreasing size. If the main diagonal element of the

current row is zero, a pivot operation has to be performed. The subsequent row with the

maximum value in this column is selected and exchanged with the current row.

A possible distribution of the matrix is to decompose its columns into blocks, one

block for each processor. The elimination of the entries in the lower triangle can then be

performed in parallel where each processor computes new values for its columns only. The

main disadvantage of this distribution is that in later computations of the algorithm only a

subgroup of the processors is actually doing any useful work since the computed rectangle

is getting smaller.

To improve load balancing, a cyclic column distribution can be applied. The computa-

tions in each step of the algorithm executed by the processors differ only in one column.

In addition to load balancing also communication needs to be minimized. Communica-

tion occurs in this algorithm for broadcasting the current column to all the processors since

it is needed to compute the multiplication factor for the row. If the domain decomposition
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Figure 1. Structure of the matrix during Gaussian elimination.

is a row distribution, which eliminates the need to communicate the current column, the

current row needs to be broadcast to the other processors.

If we consider also the pivot operation, communication is necessary to select the best

row when a row-wise distribution is applied since the computation of the global maximum

in that column requires a comparison of all values.

Selecting the best domain decomposition is further complicated due to optimizing sin-

gle node performance. In this example, it is advantageous to apply BLAS32 operations for

the local computations. These operations make use of blocks of rows to improve cache uti-

lization. Blocks of rows can only be obtained if a block-cyclic distribution is applied, i.e.,

columns are not distributed individually but blocks of columns are cyclically distributed.

This discussion makes clear, that choosing a domain decomposition is a very compli-

cated step in program development. It requires deep knowledge of the algorithm’s data

access patterns as well as the ability to predict the resulting communication.

2 Programming Models

Programming parallel computers is almost always done via the so-called Single Program

Multiple Data (SPMD) model. SPMD means that the same program (executable code) is

executed on all processors taking part in the computation, but it computes on different parts

of the data which were distributed over the processors based on a specific domain decom-

position. If computations are only allowed on specific processors, this has to be explicitly

programmed by using conditional programming constructs (e.g., with if or where state-

ments). There are two main programming models, message passing and shared memory,

offering different features for implementing applications parallelized by domain decompo-

sition.

The message passing model is based on a set of processes with private data structures.

Processes communicate by exchangingmessages with special send and receive operations.

It is a natural fit for programming distributed memory machines but also can be used on

shared memory computers. The domain decomposition is implemented by developing a

code describing the local computations and local data structures of a single process. Thus,

global arrays have to be split up and only the local part has to be allocated in a process.

This handling of global data structures is called data distribution. Computations on the

global arrays also have to be transformed, e.g., by adapting the loop bounds, to ensure that
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only local array elements are computed. Access to remote elements has to be implemented

via explicit communication, temporary variables have to be allocated, messages have to be

constructed and transmitted to the target process.

The shared memory model is based on a set of threads that is created when parallel

operations are executed. This type of computation is also called fork-join parallelism.

Threads share a global address space and thus access array elements via a global index.

The main parallel operations are parallel loops and parallel sections. Parallel loops are

executed by a set of threads also called a team. The iterations are distributed among the

threads according to a predefined strategy. This scheduling strategy implements the chosen

domain decomposition. Parallel sections are also executed by a team of threads but the

tasks assigned to the threads implement different operations. This feature can for example

be applied if domain decomposition itself does not generate enough parallelism and whole

operations can be executed in parallel since they access different data structures.

In the shared memorymodel, the distribution of data structures onto the nodememories

is not enforced by decomposing global arrays into local arrays, but the global address

space is distributed onto the memories by the operating system. For example, the pages

of the virtual address space can be distributed cyclically or can be assigned at first touch.

The chosen domain decomposition thus has to take into account the granularity of the

distribution, i.e., the size of pages, as well as the system-dependent allocation strategy.

While the domain decomposition has to be hard-coded into the message passing pro-

gram, it can easily be changed in a shared memory program by selecting a different

scheduling strategy for parallel loops.

Another advantage of the shared memory model is that automatic and incremental par-

allelization is supported. While automatic parallelization leads to a first working parallel

program, its efficiency typically needs to be improved. The reason for this is that paral-

lelization techniques work on a loop-by-loop basis and do not globally optimize the parallel

code via a domain decomposition. In addition, dependence analysis, the prerequisite for

automatic parallelization, is limited to access patterns known at compile time. The biggest

disadvantage of this model is that it can only be used on shared memory computers.

In the shared memory model, a first parallel version is relatively easy to implement

and can be incrementally tuned. In the message passing model instead, the program can

be tested only after finishing the full implementation. Subsequent tuning by adapting the

domain decomposition is usually time consuming.

3 MPI

TheMessage Passing Interface (MPI)8–12 was mainly developed between 1993 and 1997. It

is a community standard which standardizes the calling interface for a communication and

synchronization function library. It provides Fortran 77, Fortran 90, C and C++ language

bindings. It includes routines for point-to-point communication, collective communica-

tion, one-sided communication, parallel IO, and dynamic task creation. Currently, almost

all available open-source and commercial MPI implementations support the 2.0 standard

with the exception of dynamic task creation, which is only implemented by a few. In 2008,

an update and clarification of the standard was published as Version 2.1 and work has be-

gun to define further enhancements (version 3.x). For a simple example see the appendix.
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3.1 MPI Basic Routines

MPI consists of more than 320 functions. But realistic programs can already be developed

based on no more than six functions:

MPI Init initializes the library. It has to be called at the beginning of a parallel operation

before any other MPI routines are executed.

MPI Finalize frees any resources used by the library and has to be called at the end of
the program.

MPI Comm size determines the number of processors executing the parallel program.
MPI Comm rank returns the unique process identifier.

MPI Send transfers a message to a target process. This operation is a blocking send

operation, i.e., it terminates when the message buffer can be reused either because

the message was copied to a system buffer by the library or because the message was

delivered to the target process.

MPI Recv receives a message. This routine terminates if a message was copied into the
receive buffer.

3.2 MPI Communicator

All communication routines depend on the concept of a communicator. A communicator

consists of a process group and a communication context. The processes in the process

group are numbered from zero to process count - 1. The process number returned by

MPI Comm rank is the identification in the process group of the communicator which is

passed as a parameter to this routine.

The communication context of the communicator is important in identifying messages.

Each message has an integer number called a tagwhich has to match a given selector in the

corresponding receive operation. The selector depends on the communicator and thus on

the communication context. It selects only messages with a fitting tag and having been sent

relative to the same communicator. This feature is very useful in building parallel libraries

since messages sent inside the library will not interfere with messages outside if a special

communicator is used in the library. The default communicator that includes all processes

of the application is MPI COMM WORLD.

3.3 MPI Collective Operations

Another important class of operations are collective operations. Collective operations are

executed by a process group identified via a communicator. All the processes in the group

have to perform the same operation. Typical examples for such operations are:

MPI Barrier synchronizes all processes. None of the processes can proceed beyond the

barrier until all the processes started execution of that routine.

MPI Bcast allows to distribute the same data from one process, the so-called root pro-

cess, to all other processes in the process group.

MPI Scatter also distributes data from a root process to a whole process group, but each

receiving process gets different data.

MPI Gather collects data from a group of processes at a root process.
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MPI Reduce performs a global operation on the data of each process in the process

group. For example, the sum of all values of a distributed array can be computed

by first summing up all local values in each process and then summing up the local

sums to get a global sum. The latter step can be performed by the reduction operation

with the parameter MPI SUM. The result is delivered to a single target processor.

3.4 MPI IO

Data parallel applications make use of the IO subsystem to read and write big data sets.

These data sets result from replicated or distributed arrays. The reasons for IO are to read

input data, to pass information to other programs, e.g., for visualization, or to store the

state of the computation to be able to restart the computation in case of a system failure or

if the computation has to be split into multiple runs due to its resource requirements.

IO can be implemented in three ways:

1. Sequential IO

A single node is responsible to perform the IO. It gathers information from the other

nodes and writes it to disk or reads information from disk and scatters it to the ap-

propriate nodes. Whereas this approach might be feasible for small amounts of data,

it bears serious scalability issues, as modern IO subsystems can only be utilized ef-

ficiently with parallel data streams and aggregated waiting time increases rapidly at

larger scales.

2. Private IO

Each node accesses its own files. The big advantage of this implementation is that

no synchronization among the nodes is required and very high performance can be

obtained. The major disadvantage is that the user has to handle a large number of

files. For input the original data set has to be split according to the distribution of the

data structure and for output the process-specific files have to be merged into a global

file for post-processing.

3. Parallel IO

In this implementation all the processes access the same file. They read and write only

those parts of the file with relevant data. The main advantages are that no individual

files need to be handled and that reasonable performance can be reached. The parallel

IO interface of MPI provides flexible and high-level means to implement applications

with parallel IO.

Files accessed via MPI IO routines have to be opened and closed by collective opera-

tions. The open routine allows to specify hints to optimize the performance such as whether

the application might profit from combining small IO requests from different nodes, what

size is recommended for the combined request, and how many nodes should be engaged in

merging the requests.

The central concept in accessing the files is the view. A view is defined for each process

and specifies a sequence of data elements to be ignored and data elements to be read or

written by the process. When reading or writing a distributed array the local information

can be described easily as such a repeating pattern. The IO operations read and write
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a number of data elements on the basis of the defined view, i.e., they access the local

information only. Since the views are defined via runtime routines prior to the access, the

information can be exploited in the library to optimize IO.

MPI IO provides blocking as well as nonblocking operations. In contrast to blocking

operations, the nonblocking ones only start IO and terminate immediately. If the program

depends on the successful completion of the IO it has to check it via a test function. Besides

the collective IO routines which allow to combine individual requests, also non-collective

routines are available to access shared files.

3.5 MPI Remote Memory Access

Remote memory access (RMA) operations (also called one-sided communication) allow to

access the address space of other processes without participation of the other process. The

implementation of this concept can either be in hardware, such as in the CRAY T3E, or in

software via additional threads waiting for requests. The advantages of these operations

are that the protocol overhead is much lower than for normal send and receive operations

and that no polling or global communication is required for setting up communication.

In contrast to explicit message passing where synchronization happens implicitly, ac-

cesses via RMA operations need to be protected by explicit synchronization operations.

RMA communication in MPI is based on the window concept. Each process has to

execute a collective routine that defines a window, i.e., the part of its address space that can

be accessed by other processes.

The actual access is performed via put and get operations. The address is defined by the

target process number and the displacement relative to the starting address of the window

for that process.

MPI also provides special synchronization operations relative to a window. The

MPI Win fence operation synchronizes all processes that make some address ranges acces-

sible to other processes. It is a collective operation that ensures that all RMA operations

started before the fence operation terminate before the target process executes the fence

operation and that all RMA operations of a process executed after the fence operation are

executed after the target process executed the fence operation. There are also more fine

grained synchronization methods available in the form of the General Active Target Syn-

chronization or via locks.

4 OpenMP

OpenMP13–15 is a directive-based programming interface for the shared memory program-

ming model. It consists of a set of directives and runtime routines for Fortran 77 (published

1997), for Fortran 90 (2000), and a corresponding set of pragmas for C and C++ (1998). In

2005, a combined Fortran, C, and C++ standard (Version 2.5) and 2008, an update (Version

3.0) were published.

Directives are special comments that are interpreted by the compiler. Directives have

the advantage that the code is still a sequential code that can be executed on sequential

machines (by ignoring the directives/pragmas) and therefore there is no need to maintain

separate sequential and parallel versions.
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Directives start and terminate parallel regions. When the master thread hits a parallel

region a team of threads is created or activated. The threads execute the code in parallel

and are synchronized at the beginning and the end of the computation. After the final

synchronization the master thread continues sequential execution after the parallel region.

The main directives are:

!$OMP PARALLEL DO specifies a loop that can be executed in parallel. The DO

loop’s iterations can be distributed among the set of threads according to vari-

ous scheduling strategies including STATIC(CHUNK), DYNAMIC(CHUNK), and

GUIDED(CHUNK). STATIC(CHUNK) distribution means that the set of iterations

are consecutively distributed among the threads in blocks of CHUNK size (resulting

in block and cyclic distributions). DYNAMIC(CHUNK) distribution implies that iter-

ations are distributed in blocks of CHUNK size to threads on a first-come-first-served

basis. GUIDED (CHUNK) means that blocks of exponentially decreasing size are as-

signed on a first-come-first-served basis. The size of the smallest block is determined

by CHUNK size.

!$OMP PARALLEL SECTIONS starts a set of sections that are each executed in par-
allel by a team of threads.

!$OMP PARALLEL introduces a code region that is executed redundantly by the

threads. It has to be used very carefully since assignments to global variables will

lead to conflicts among the threads and possibly to nondeterministic behavior.

!$OMP DO / FOR is a work sharing construct and may be used within a parallel region.

All the threads executing the parallel region have to cooperate in the execution of the

parallel loop. There is no implicit synchronization at the beginning of the loop but a

synchronization at the end. After the final synchronization all threads continue after

the loop in the replicated execution of the program code.

The main advantage of this approach is that the overhead for starting up the threads is

eliminated. The team of threads exists during the execution of the parallel region and

need not be built before each parallel loop.

!$OMP SECTIONS is also a work sharing construct that allows the current team of

threads executing the surrounding parallel region to cooperate in the execution of

the parallel sections.

!$OMP TASK is only available with the new version 3.0 of the standard and greatly sim-

plifies the parallelization on non-loop constructs by allowing to dynamically specify

portions of the programs which can run independently.

Program data can either be shared or private. While threads do have their own copy of

private data, only one copy exists of shared data. This copy can be accessed by all threads.

To ensure program correctness, OpenMP provides special synchronization constructs. The

main constructs are barrier synchronization enforcing that all threads have reached this

synchronization operation before execution continues and critical sections. Critical sec-

tions ensure that only a single thread can enter the section and thus, data accesses in such a

section are protected from race conditions. For example, a common situation for a critical

section is the accumulation of values. Since an accumulation consists of a read and a write

operation unexpected results can occur if both operations are not surrounded by a critical

section. For a simple example of an OpenMP parallelization see the appendix.
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5 Parallel Debugging

Debugging parallel programs is more difficult than debugging sequential programs not only

since multiple processes or threads need to be taken into account but also because program

behaviormight not be deterministic and might not be reproducible. These problems are not

solved by current state-of-the-art commercial parallel debuggers. They only deal with the

first problem by providing menus, displays, and commands that allow to inspect individual

processes and execute commands on individual or all processes.

Two widely used debuggers are TotalView from Totalview Technologies21 and DDT

from Allinea3. They provide breakpoint definition, single stepping, and variable inspec-

tion for parallel programs via an interactive interface. The programmer can execute those

operations for individual processes and groups of processes. They also provides some

means to summarize information such that equal information from multiple processes is

combined into a single information and not repeated redundantly. They also support MPI

and OpenMP programs on many platforms.

6 Parallel Performance Analysis

Performance analysis is an iterative subtask during program development. The goal is to

identify program regions that do not perform well. Performance analysis is structured into

three phases:

1. Measurement

Performance analysis is done based on information on runtime events gathered during

program execution. The basic events are, for example, cache misses, termination of a

floating point operation, start and stop of a subroutine or message passing operation.

The information on individual events can be summarized during program execution

(profiling) or individual trace records can be collected for each event (tracing).

2. Analysis

During analysis the collected runtime data are inspected to detect performance prob-

lems. Performance problems are based on performance properties, such as the exis-

tence of message passing in a program region, which have a condition for identifying

it and a severity function that specifies its importance for program performance.

Current tools support the user in checking the conditions and the severity by a visu-

alization of the program behavior. Future tools might be able to automatically detect

performance properties based on a specification of possible properties. During analy-

sis the programmer applies a threshold. Only performance properties whose severity

exceeds this threshold are considered to be performance problems.

3. Ranking

During program analysis the severest performance problems need to be identified.

This means that the problems need to be ranked according to the severity. The most

severe problem is called the program bottleneck. This is the problem the programmer

tries to resolve by applying appropriate program transformations.
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Current techniques for performance data collection are profiling and tracing. Profiling

collects summary data only. This can be done via sampling. The program is regularly

interrupted, e.g., every 10 ms, and the information is added up for the source code location

which was executed in this moment. For example, the UNIX profiling tool prof applies this

technique to determine the fraction of the execution time spent in individual subroutines.

A more precise profiling technique is based on instrumentation, i.e., special calls to a

monitoring library are inserted into the program. This can either be done in the source

code by the compiler or specialized tools, or can be done in the object code. While the

first approach allows to instrument more types of regions, for example, loops and vector

statements, the latter allows to measure data for programs where no source code is avail-

able. The monitoring library collects the information and adds it to special counters for the

specific region.

Tracing is a technique that collects information for each event. This results, for exam-

ple, in very detailed information for each instance of a subroutine and for each message

sent to another process. The information is stored in specialized trace records for each

event type. For example, for each start of a send operation, the time stamp, the message

size and the target process can be recorded, while for the end of the operation, the time

stamp and bandwidth are stored.

The trace records are stored in the memory of each process and are written to a trace

file either when the buffer is filled up or when the program terminates. The individual trace

files of the processes are merged together into one trace file ordered according to the time

stamps of the events.

Profiling has the advantage to be of moderate size while trace information tends to

be very large. The disadvantage of profiling is that it is not fine grained; the behavior

of individual instances of subroutines can for example not be investigated since all the

information has been summed up.

Widely used performance tools include TAU19, 20 from the University of Oregon, Vam-

pir22, 23 from the Technical University of Dresden, and Scalasca17, 18 from the Jülich Super-

computing Centre.

7 Summary

This article gave an overview of parallel programming models as well as programming

tools. Parallel programming will always be a challenge for programmers. Higher-level

programmingmodels and appropriate programming tools only facilitate the process but do

not make it a simple task.

While programming in MPI offers the greatest potential performance, shared memory

programming with OpenMP is much more comfortable due to the global style of the re-

sulting program. The sequential control flow among the parallel loops and regions matches

much better with the sequential programming model all the programmers are trained for.

Although programming tools were developed over years, the current situation seems

not to be very satisfying. Program debugging is done per thread, a technique that does not

scale to larger numbers of processors. Performance analysis tools do also suffer scalability

limitations and, in addition, the tools are complicated to use. The programmers have to

be experts for performance analysis to understand potential performance problems, their

proof conditions, and their severity. In addition they have to be experts for powerful but

545



also complex user interfaces.

Future research in this area has to try to automate performance analysis tools, such

that frequently occurring performance problems can be identified automatically. First au-

tomatic tools are already available: ParaDyn7 from the University of Wisconsin-Madison

and KOJAK6/Scalasca17, 18 from the Jülich Supercomputing Centre.

A second important trend that will effect parallel programming in the future is the move

towards clustered shared memory systems with nodes consisting of multi-core processors.

This introduces a potentially 3-level parallelism hierarchy (machine - node - processor).

Clearly, a hybrid programming approach will be applied on those systems for best perfor-

mance, combiningmessage passing between the individual SMP nodes and shared memory

programming in a node. This programming model will lead to even more complex pro-

grams and program development tools have to be enhanced to be able to help the user in

developing these codes.

A promising approach to reduce complexity in parallel programming in the future are

so-called partitioned global address space (PGAS) languages16, such as Unified Parallel

C (UPC) or Co-array Fortran (CAF) which provide simple means to distribute data and

communicate implicitly via efficient one-sided communication.

Appendix

This appendix provides three versions of a simple example of a scientific computation. It

computes the value of π by numerical integration:

π =

∫
1

0

f(x)dx with f(x) =
4

1 + x2

This integral can be approximated numerically by the midpoint rule:

π ≈
1

n

∫
n

1

f(xi) with xi =
(i − 0.5)

n
for i = 1, . . . , n

Larger values of the parameter n will give us more accurate approximations of π. This

is not, in fact, a very goodway to computeπ, but it makes a good example because it has the

typical, complete structure of a numerical simulation program (initialization - loop-based

calculation - wrap-up), and the whole source code fits one one page or slide.

To parallelize the example, each process/thread computes and adds up the areas for a

different subset of the rectangles. At the end of the computation, all of the local sums are

combined into a global sum representing the value of π.

MPI Version of Example Program

The following listing shows a Fortran90 implementation of the π numerical integration

example parallelized with the help of MPI.
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1 program p i mp i

2 i m p l i c i t none

3 i n c lude ’ mpif . h ’

4 i n t e g e r : : i , n , i e r r , myrank , numprocs

5 double p r e c i s i o n : : f , x , sum , p i , h , mypi

6

7 c a l l MPI I n i t ( i e r r )
8 c a l l MPI Comm rank (MPI COMMWORLD, myrank , i e r r )

9 c a l l MPI Comm size (MPI COMMWORLD, numprocs , i e r r )
10

11 i f ( myrank == 0 ) then

12 wr i t e ( ∗ , ∗ ) ” number o f i n t e r v a l s ? ”
13 read ( ∗ , ∗ ) n

14 end i f

15

16 c a l l MPI Bcast ( n , 1 , MPI INTEGER , 0 , MPI COMMWORLD, i e r r )

17

18 h = 1 . 0 d0 / n

19 sum = 0 . 0 d0

20 do i = myrank +1 , n , numprocs
21 x = ( i − 0 . 5 d0 ) ∗ h

22 sum = sum + ( 4 . d0 / ( 1 . d0 + x∗x ) )

23 end do
24 mypi = h ∗ sum

25

26 c a l l MPI Reduce ( mypi , p i , 1 , MPI DOUBLE PRECISION , &

27 MPI SUM , 0 , MPI COMMWORLD, i e r r )

28

29 i f ( myrank == 0 ) then

30 wr i t e (∗ , fmt=” (A, F16 . 1 2 ) ” ) ” Value o f p i i s ” , p i

31 end i f
32

33 c a l l MPI F i n a l i z e ( i e r r )
34 end program

First, the MPI system has to be initialized (lines 7 to 9) and terminated (line 33) with

the necessary MPI calls. Next, the input of parameters (line 11 to 14) and the output of

results (lines 29 to 31) has to be restricted so that it is only executed by one processor.

Then, the input has to be broadcasted to the other processors (line 16). The biggest (and

most complicated) change is to program the distribution of work and data. The do-loop in

line 20 has to be changed so that each processor only calculates and summarizes its part of

the distributed computations. Finally, the reduce call in lines 26/27 collects the local sums

and delivers the global sum to processor 0.
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Sequential and OpenMP Version of Example Program

The following listing shows the corresponding implementation of the π integration exam-

ple using OpenMP. As one can see, because of the need to explicitly program all aspects

of the parallelization, the MPI version is almost twice as long as the OpenMP version.

Although this is clearly more work, it gives a programmer much more ways to express

and control parallelism. Also, the MPI version will run on all kinds of parallel computers,

while OpenMP is restricted to the shared memory architecture.

As OpenMP is based on directives (which are plain comments in a non-OpenMP com-

pilation mode), it is at the same time also a sequential implementation of the example.

1 program pi omp

2 i m p l i c i t none

3 i n t e g e r : : i , n

4 double p r e c i s i o n : : f , x , sum , p i , h
5

6 wr i t e ( ∗ , ∗ ) ” number o f i n t e r v a l s ? ”
7 read ( ∗ , ∗ ) n

8

9 h = 1 . 0 d0 / n

10 sum = 0 . 0 d0

11 ! $omp p a r a l l e l do p r i v a t e ( i , x ) r e d u c t i o n (+: sum )

12 do i = 1 , n
13 x = ( i − 0 . 5 d0 ) ∗ h

14 sum = sum + ( 4 . d0 / ( 1 . d0 + x∗x ) )

15 end do
16 p i = h ∗ sum

17

18 wr i t e (∗ , fmt=” (A, F16 . 1 2 ) ” ) ” Value o f p i i s ” , p i

19 end program

The OpenMP directive in line 11 declares the following do-loop as parallel resulting in

a concurrent execution of loop iterations. As the variables i and x are used to store values

during the execution of the loop, they have to be declared private, so that each thread

executing iterations has its own copy. The variable h is only read, so it can be shared.

Finally, it is specified that there is a reduction (using addition) over the variable sum.
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