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Introduction to Parallel Computing

Bernd Mohr

Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)
Forschungszentrum Julich, 52425 Julich, Germany
E-mail: b.mohr@fz-juelich.de

The major parallel programming models for scalable pdraltehitectures are the message
passing model and the shared memory model. This articlsestthe main concepts of these
models as well as the industry standard programming irtesf&P| and OpenMP. To exploit
the potential performance of parallel computers, prograged to be carefully designed and
tuned. We will discuss design decisions for good perforraaae well as programming tools
that help the programmer in program tuning.

1 Introduction

Many applications like numerical simulations in industrmydaresearch as well as com-
mercial applications such as query processing, data miaimg) multi-media applications
require more compute power than provided by sequential coenp. Current hardware
architectures offering high performance do not only exppairallelism within a single
processor via multiple CPU cores but also apply a mediumrgelaumber of processors
concurrently to a single computation. High-end parallehpaters currently (2009) de-
liver up to 1 Petaflop/s1('® floating point operations per second) and are developed and
exploited within the ASC (Advanced Simulation and Compgliprogram of the Depart-
ment of Energy in the USA and PRACE (Partnership for Advar@echputing in Europe)
in Europe. In addition, the current trend to multi-core @ssors also requires parallel
programming to fully exploit the compute power of the mu#ipores.

This article concentrates on programming numerical apptios on parallel computer
architectures introduced in Section 1.1. Parallelizatitthose applications centers around
selecting a decomposition of the data domain onto the psocesuch that the workload
is well balanced and the communication between processeoesliiced (Section 1.2)

The parallel implementation is then based on either the agesgassing or the shared
memory model (Section 2). The standard programming interfar the message passing
model is MPI (Message Passing Interfdc&) offering a complete set of communication
routines (Section 3). OpenMP'5is the standard for directive-based shared memory pro-
gramming and will be introduced in Section 4.

Since parallel programs exploit multiple threads of colntdlebugging is even more
complicated than for sequential programs. Section 5 aglthe main concepts of parallel
debuggers and presents TotalViédwand DD, the most widely available debuggers for
parallel programs.

Although the domain decomposition is key to good perforneaoc parallel archi-
tectures, program efficiency also heavily depends on théeimgntation of the commu-
nication and synchronization required by the parallel atgms and the implementation
techniques chosen for sequential kernels. Optimizingetlaspects is very system depen-
dent and thus, an interactive tuning process consistingeafsaring performance data and
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applying optimizations follows the initial coding of the@jzation. The tuning process is
supported by programming model specific performance aisalysls. Section 6 presents
basic performance analysis techniques.

1.1 Parallel Architectures

A parallel computeror multi-processor systems a computer utilizing more than one pro-
cessor. A common way to classify parallel computers is ttrdjsish them by the way
how processors can access the system’s main memory beb@&isgltiences heavily the
usage and programming of the system.

In a distributed memory architectutde system is composed out of single-processor
nodes with local memory. The most important characteristithis architecture is that
access to the local memory is faster than to remote memoiig. thte challenge for the
programmer to assign data to the processors such that mtist ofata accessed during
the computation are already in the node’s local memory. Twntlasses of distributed
memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any special hardware
support to access another node’s local memory directly. fiddes are only con-
nected through a computer network. Processors obtain dataremote memory
only by exchanging messages over this network between gges®n the requesting
and the supplying node. Computers in this class are sometise calledNetwor k
Of Workstations (NOW) or Clusters Of Workstations (COW).

Remote Memory Access (RMA) computers allow to access remote memory via special-
ized operations implemented by hardware, however the rexeldoes not provide a
global address space, i.e., a memory location is not detedniia an address in a
shared linear address space but via a tuple consisting pftitessor number and the
local address in the target processor’s address space.

The major advantage of distributed memory systems is thudityato scale to a very
large number of nodes. Today (2009), systems with more th&0R0 cores have been
built. The disadvantage is that such systems are very hgmbtgram.

In contrast, ashared memory architectungrovides (in hardware) a global address
space, i.e., all memory locations can be accessed via wmehbind store operations. Ac-
cess to a remote location results in a copy of the approprébe line in the processor’s
cache. Therefore, such a system is much easier to prograweudq shared memory sys-
tems can only be scaled to moderate numbers of processpisalty 64 or 128. Shared
memory systems are further classified according to the tyuzlthe memory accesses:

Uniform Memory Access (UMA) computer systems feature one global shared memory
subsystem which is connected to the processors throughteatbns or memory
switch. All of the memory is accessible to all processorshim $ame way. Such a
system is also often calle®y/mmetrical Multi Processor (SMP).

Non Uniform Memory Access (NUMA) computers are more scalable by physically dis-
tributing the memory but still providing a hardware implemed global address
space. Therefore access to memory local or close to a pardssaster than to re-
mote memory. If such a system has additional hardware whschemsures that multi-
ple copies of data stored in different cache lines of thegssors is kept coherent, i.e.,
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the copies always do have the same value, then it is caltéache-Coherent Non
Uniform Memory Access (ccNUMA) system. ccNUMA systems offer the abstrac-
tion of a shared linear address space resembling physkfadised memory systems.
This abstraction simplifies the task of program developrbahtioes not necessarily
facilitate program tuning.

While most of the early parallel computers were simple singlocessor NORMA
systems, today’s large parallel systems are typidajlyrid systemsi.e., shared memory
NUMA nodes with a moderate number of processors are corshéateether to form a
distributed memory cluster system.

1.2 DataParallel Programming

Applications that scale to a large number of processorsllysuerform computations on
large data domains. For example, crash simulations arellmespartial differential equa-
tions that are solved on a large finite element grid and médealynamics applications
simulate the behavior of a large number of particles. Otlaealfel applications apply lin-
ear algebra operations to large vectors and matrices. Emegital operations on each
object in the data domain can be executed in parallel by thitadle processors.

The scheduling of operations to processors is determinedtioynain decompositién
specified by the programmer. Processors execute thosetiopsrénat determine new val-
ues for elements stored in local memory (owner-computes.rWhile processors execute
an operation, they may need values from other processoesddimain decomposition has
thus to be chosen so that the distribution of operationslanisad and the communication
is minimized. The third goal is to optimize single node comapion, i.e., to be able to
exploit the processor’s pipelines and the processor’'sesaefiiciently.

A good example for the design decisions taken when seleatiftggnain decomposition
is Gaussian eliminatidn The main structure of the matrix during the steps of theritiym
is outlined in Figure 1.

The goal of this algorithm is to eliminate all entries in thatnix below the main
diagonal. It starts at the top diagonal element and sulstraattiples of the first row from
the second and subsequent rows to end up with zeros in thedltshn. This operation
is repeated for all the rows. In later stages of the algorithenactual computations have
to be done on rectangular sections of decreasing size. thtie diagonal element of the
current row is zero, a pivot operation has to be performed Sitbsequent row with the
maximum value in this column is selected and exchanged Wélttirrent row.

A possible distribution of the matrix is to decompose itsuoohs into blocks, one
block for each processor. The elimination of the entriehalower triangle can then be
performed in parallel where each processor computes newevédr its columns only. The
main disadvantage of this distribution is that in later comagtions of the algorithm only a
subgroup of the processors is actually doing any useful wioiée the computed rectangle
is getting smaller.

To improve load balancing, a cyclic column distribution ¢enapplied. The computa-
tions in each step of the algorithm executed by the procsshffer only in one column.

In addition to load balancing also communication needs tminémized. Communica-
tion occurs in this algorithm for broadcasting the curresittimn to all the processors since
it is needed to compute the multiplication factor for the réfithe domain decomposition
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Figure 1. Structure of the matrix during Gaussian elimorati

is a row distribution, which eliminates the need to commatedhe current column, the
current row needs to be broadcast to the other processors.

If we consider also the pivot operation, communication isassary to select the best
row when a row-wise distribution is applied since the corafiah of the global maximum
in that column requires a comparison of all values.

Selecting the best domain decomposition is further corapgit due to optimizing sin-
gle node performance. In this example, it is advantageoapjity BLASZ operations for
the local computations. These operations make use of btfaksvs to improve cache uti-
lization. Blocks of rows can only be obtained if a block-ggdistribution is applied, i.e.,
columns are not distributed individually but blocks of aols are cyclically distributed.

This discussion makes clear, that choosing a domain decsitigois a very compli-
cated step in program development. It requires deep kngeled the algorithm’s data
access patterns as well as the ability to predict the regutbmmunication.

2 Programming Models

Programming parallel computers is almost always done \é@asthcalledSingle Program
Multiple Data (SPMD) model. SPMD means that the same program (executadé ¢
executed on all processors taking part in the computatigrit bomputes on different parts
of the data which were distributed over the processors baisedspecific domain decom-
position. If computations are only allowed on specific pgswes, this has to be explicitly
programmed by using conditional programming constructs (ithi f orwher e state-
ments). There are two main programming modeisssage passirgndshared memory
offering different features for implementing applicatiqrarallelized by domain decompo-
sition.

The message passing model is based on a set of processesivéth gata structures.
Processes communicate by exchanging messages with sgpwibhnd receive operations.
It is a natural fit for programming distributed memory madsbut also can be used on
shared memory computers. The domain decomposition is mgai¢ed by developing a
code describing the local computations and local datatstres of a single process. Thus,
global arrays have to be split up and only the local part hdsetallocated in a process.
This handling of global data structures is caldata distribution Computations on the
global arrays also have to be transformed, e.g., by adaghitelpop bounds, to ensure that
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only local array elements are computed. Access to remotesgits has to be implemented
via explicit communication, temporary variables have talecated, messages have to be
constructed and transmitted to the target process.

The shared memory model is based on a set of threads thataiedrehen parallel
operations are executed. This type of computation is aliedcéork-join parallelism
Threads share a global address space and thus access amapisl via a global index.
The main parallel operations aparallel loopsand parallel sections Parallel loops are
executed by a set of threads also calledga@m The iterations are distributed among the
threads according to a predefined strategy. This schedstliatpgy implements the chosen
domain decomposition. Parallel sections are also exedyteadteam of threads but the
tasks assigned to the threads implement different opesatithis feature can for example
be applied if domain decomposition itself does not generateigh parallelism and whole
operations can be executed in parallel since they accdesatif data structures.

In the shared memory model, the distribution of data stmestonto the node memories
is not enforced by decomposing global arrays into localyairéut the global address
space is distributed onto the memories by the operatingsystor example, the pages
of the virtual address space can be distributed cyclicallyam be assigned at first touch.
The chosen domain decomposition thus has to take into att¢boergranularity of the
distribution, i.e., the size of pages, as well as the systependent allocation strategy.

While the domain decomposition has to be hard-coded intortbgsage passing pro-
gram, it can easily be changed in a shared memory program lbgtisgy a different
scheduling strategy for parallel loops.

Another advantage of the shared memory model is that auioaral incremental par-
allelization is supported. While automatic parallelipatieads to a first working parallel
program, its efficiency typically needs to be improved. Téason for this is that paral-
lelization techniques work on a loop-by-loop basis and daiabally optimize the parallel
code via a domain decomposition. In addition, dependenalysis, the prerequisite for
automatic parallelization, is limited to access pattemakn at compile time. The biggest
disadvantage of this model is that it can only be used on dirasmory computers.

In the shared memory model, a first parallel version is nethtieasy to implement
and can be incrementally tuned. In the message passing rimstid, the program can
be tested only after finishing the full implementation. Sadisent tuning by adapting the
domain decomposition is usually time consuming.

3 MPI

The Message Passing Interface (MPJwas mainly developed between 1993 and 1997. It
is a community standard which standardizes the callingfaxte for a communication and
synchronization function library. It provides Fortran Fartran 90, C and C++ language
bindings. It includes routines for point-to-point commeation, collective communica-
tion, one-sided communication, parallel 10, and dynamsk tzreation. Currently, almost
all available open-source and commercial MPI implemeatatisupport the 2.0 standard
with the exception of dynamic task creation, which is onlplemented by a few. In 2008,
an update and clarification of the standard was publisheceson 2.1 and work has be-
gun to define further enhancements (version 3.x). For a siexdample see the appendix.
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3.1 MPI Basic Routines

MPI consists of more than 320 functions. But realistic pemgs can already be developed
based on no more than six functions:

MPI _Init initializes the library. It has to be called at the beginnirig. parallel operation
before any other MPI routines are executed.

MPI _Finalize frees any resources used by the library and has to be caltbé and of
the program.

MPI_Comm_size determines the number of processors executing the papatigtam.

MPI_Comm_rank returns the unique process identifier.

MPI_Send transfers a message to a target process. This operationléxking send
operation, i.e., it terminates when the message buffer earebsed either because
the message was copied to a system buffer by the library @useache message was
delivered to the target process.

MPI_Recv receives a message. This routine terminates if a messageopwesl into the
receive buffer.

3.2 MPI Communicator

All communication routines depend on the concept cbenmunicator A communicator
consists of a process group and a communication context.piideesses in the process
group are numbered from zero to process count - 1. The prouesber returned by
MPI_Comm.rank is the identification in the process group of the comatoir which is
passed as a parameter to this routine.

The communication context of the communicator is importaidentifying messages.
Each message has an integer number caltad @hich has to match a given selector in the
corresponding receive operation. The selector dependseocommunicator and thus on
the communication context. It selects only messages wittirggftag and having been sent
relative to the same communicator. This feature is veryulsebuilding parallel libraries
since messages sent inside the library will not interfeté wiessages outside if a special
communicator is used in the library. The default commuuoicttat includes all processes
of the application is MPCOMM_WORLD.

3.3 MPI Collective Operations

Another important class of operations aalective operationsCollective operations are
executed by a process group identified via a communicatbthélprocesses in the group
have to perform the same operation. Typical examples fdr eperations are:

MPI_Barrier synchronizes all processes. None of the processes careprbegond the
barrier until all the processes started execution of thatime.

MPI _Bcast allows to distribute the same data from one process, thekedeoot pro-
cess, to all other processes in the process group.

MPI _Scatter also distributes data from a root process to a whole proaesgpgbut each
receiving process gets different data.

MPI_Gather collects data from a group of processes at a root process.
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MPI_Reduce performs a global operation on the data of each process iprbeess
group. For example, the sum of all values of a distributedyaoan be computed
by first summing up all local values in each process and themrgng up the local
sums to get a global sum. The latter step can be performecdelngtiuction operation
with the parameter MPSUM. The result is delivered to a single target processor.

34 MPIIO

Data parallel applications make use of the 10 subsystemaad amd write big data sets.
These data sets result from replicated or distributed arrélie reasons for 10 are to read
input data, to pass information to other programs, e.g.yigualization, or to store the
state of the computation to be able to restart the computatioase of a system failure or
if the computation has to be split into multiple runs due sa@source requirements.

IO can be implemented in three ways:

1. Sequential 10

A single node is responsible to perform the 10. It gathersrimiation from the other
nodes and writes it to disk or reads information from disk aoatters it to the ap-
propriate nodes. Whereas this approach might be feasib&fall amounts of data,
it bears serious scalability issues, as modern IO subsgstem only be utilized ef-
ficiently with parallel data streams and aggregated watiimg increases rapidly at
larger scales.

2. Private 10

Each node accesses its own files. The big advantage of thiermeptation is that
no synchronization among the nodes is required and very fegformance can be
obtained. The major disadvantage is that the user has tdenarldrge number of
files. For input the original data set has to be split accagrttirthe distribution of the
data structure and for output the process-specific files tealve merged into a global
file for post-processing.

3. Parallel IO

In this implementation all the processes access the samélfiégy read and write only
those parts of the file with relevant data. The main advastagethat no individual
files need to be handled and that reasonable performancecaadhed. The parallel
10 interface of MPI provides flexible and high-level meangtplement applications
with parallel 10.

Files accessed via MPI 1O routines have to be opened anddchyseollective opera-
tions. The open routine allows to specify hints to optimizeperformance such as whether
the application might profit from combining small IO requebm different nodes, what
size is recommended for the combined request, and how malgsrsiould be engaged in
merging the requests.

The central concept in accessing the files isvileg: A view is defined for each process
and specifies a sequence of data elements to be ignored andleatents to be read or
written by the process. When reading or writing a distriduderay the local information
can be described easily as such a repeating pattern. The d@tams read and write
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a number of data elements on the basis of the defined viewthe&y access the local
information only. Since the views are defined via runtimetires prior to the access, the
information can be exploited in the library to optimize 10.

MPI 10 provides blocking as well as nonblocking operatiolmscontrast to blocking
operations, the nonblocking ones only start 10 and termiimamediately. If the program
depends on the successful completion of the |10 it has to dheieka test function. Besides
the collective 10 routines which allow to combine individuequests, also non-collective
routines are available to access shared files.

3.5 MPI Remote Memory Access

Remote memory accef8MA) operations (also calledne-sided communicatipallow to
access the address space of other processes withoutgitioi of the other process. The
implementation of this concept can either be in hardwareh s in the CRAY T3E, orin
software via additional threads waiting for requests. Ttheaatages of these operations
are that the protocol overhead is much lower than for norerad and receive operations
and that no polling or global communication is required fefting up communication.

In contrast to explicit message passing where synchraaizhappens implicitly, ac-
cesses via RMA operations need to be protected by explicthsypnization operations.

RMA communication in MPI is based on tlvéindow concept Each process has to
execute a collective routine that defines a window, i.e.ptireof its address space that can
be accessed by other processes.

The actual access is performed piastandgetoperations. The address is defined by the
target process number and the displacement relative tdahéng address of the window
for that process.

MPI also provides special synchronization operationstikgato a window. The
MPI1_Win_fence operation synchronizes all processes that make sinness ranges acces-
sible to other processes. It is a collective operation thatiees that all RMA operations
started before the fence operation terminate before tigett@arocess executes the fence
operation and that all RMA operations of a process executedthe fence operation are
executed after the target process executed the fence igperdihere are also more fine
grained synchronization methods available in the form ef@eneral Active Target Syn-
chronization or via locks.

4 OpenMP

OpenMP3-15is a directive-based programming interface for the shareshary program-
ming model. It consists of a set of directives and runtiméinas for Fortran 77 (published
1997), for Fortran 90 (2000), and a corresponding set ofmpeagfor C and C++ (1998). In
2005, a combined Fortran, C, and C++ standard (Version 22808, an update (Version
3.0) were published.

Directives are special comments that are interpreted bgahgpiler. Directives have
the advantage that the code is still a sequential code tmabeaxecuted on sequential
machines (by ignoring the directives/pragmas) and theedftere is no need to maintain
separate sequential and parallel versions.
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Directives start and terminate parallel regions. When thster thread hits a parallel
region a team of threads is created or activated. The threseetzite the code in parallel
and are synchronized at the beginning and the end of the datignu After the final
synchronization the master thread continues sequentalgion after the parallel region.
The main directives are:

ISOMP PARALLEL DO specifies a loop that can be executed in parallel. The DO
loop’s iterations can be distributed among the set of ttseactording to vari-
ous scheduling strategies including STATIC(CHUNK), DYNAMCHUNK), and
GUIDED(CHUNK). STATIC(CHUNK) distribution means that treet of iterations
are consecutively distributed among the threads in blo€EK&HUNK size (resulting
in block and cyclic distributions). DYNAMIC(CHUNK) distbution implies that iter-
ations are distributed in blocks of CHUNK size to threads dirs&come-first-served
basis. GUIDED (CHUNK) means that blocks of exponentiallgr@asing size are as-
signed on a first-come-first-served basis. The size of thdeshalock is determined
by CHUNK size.

ISOMP PARALLEL SECTIONS starts a set of sections that are each executed in par-
allel by a team of threads.

ISOMP PARALLEL introduces a code region that is executed redundantly by the
threads. It has to be used very carefully since assignmergtobal variables will
lead to conflicts among the threads and possibly to nondetestic behavior.

ISOMP DO / FOR is a work sharing construct and may be used within a paraggon.

All the threads executing the parallel region have to coatgen the execution of the
parallel loop. There is no implicit synchronization at thegimning of the loop but a
synchronization at the end. After the final synchronizatiithreads continue after
the loop in the replicated execution of the program code.

The main advantage of this approach is that the overheatsfding up the threads is
eliminated. The team of threads exists during the executidine parallel region and
need not be built before each parallel loop.

ISOMP SECTIONS is also a work sharing construct that allows the current tedm
threads executing the surrounding parallel region to craipen the execution of
the parallel sections.

ISOMP TASK is only available with the new version 3.0 of the standardgrectly sim-
plifies the parallelization on non-loop constructs by allogvto dynamically specify
portions of the programs which can run independently.

Program data can either be shared or private. While threatiaee their own copy of
private data, only one copy exists of shared data. This capye accessed by all threads.
To ensure program correctness, OpenMP provides specighgymization constructs. The
main constructs arbarrier synchronizatiorenforcing that all threads have reached this
synchronization operation before execution continuesaitidal sections Critical sec-
tions ensure that only a single thread can enter the seatbthais, data accesses in such a
section are protected from race conditions. For examplepamon situation for a critical
section is the accumulation of values. Since an accumulabtasists of a read and a write
operation unexpected results can occur if both operatimaat surrounded by a critical
section. For a simple example of an OpenMP parallelizatantke appendix.
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5 Parallel Debugging

Debugging parallel programs is more difficult than debuggiequential programs not only
since multiple processes or threads need to be taken inbmatbut also because program
behavior might not be deterministic and might not be repedula. These problems are not
solved by current state-of-the-art commercial parall&udgers. They only deal with the
first problem by providing menus, displays, and commandsiif@w to inspect individual
processes and execute commands on individual or all pregess

Two widely used debuggers are TotalView from Totalview Temlbgieg! and DDT
from Allinea®. They provide breakpoint definition, single stepping, aadable inspec-
tion for parallel programs via an interactive interface efintogrammer can execute those
operations for individual processes and groups of proses3$@ey also provides some
means to summarize information such that equal informdtimm multiple processes is
combined into a single information and not repeated reduothylarhey also support MPI
and OpenMP programs on many platforms.

6 Parallel Performance Analysis

Performance analysis is an iterative subtask during progtavelopment. The goal is to
identify program regions that do not perform well. Perfomo@analysis is structured into
three phases:

1. Measurement

Performance analysis is done based on information on rergirants gathered during
program execution. The basic events are, for example, cadses, termination of a
floating point operation, start and stop of a subroutine asgage passing operation.
The information on individual events can be summarizedrduprogram execution
(profiling) or individual trace records can be collected for each eftemting).

2. Analysis

During analysis the collected runtime data are inspectetectperformance prob-
lems Performance problems are basedpenformance propertiesuch as the exis-
tence of message passing in a program region, which havediticorfor identifying
it and a severity function that specifies its importance fagpam performance.

Current tools support the user in checking the conditiortstha severity by a visu-
alization of the program behavior. Future tools might becablautomatically detect
performance properties based on a specification of pogsibfgerties. During analy-
sis the programmer applies a threshold. Only performangegpties whose severity
exceeds this threshold are considered to be performanbéeprs.

3. Ranking

During program analysis the severest performance probiered to be identified.
This means that the problems need to be ranked according &etlerity. The most
severe problem is called thpgogram bottleneckThis is the problem the programmer
tries to resolve by applying appropriate program transésioms.
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Current technigues for performance data collectiorpaoéiling andtracing. Profiling
collects summary data only. This can be donesampling The program is regularly
interrupted, e.g., every 10 ms, and the information is adgiefbr the source code location
which was executed in this moment. For example, the UNIX fangftool prof applies this
technique to determine the fraction of the execution timensp individual subroutines.

A more precise profiling technique is basedionstrumentationi.e., special calls to a
monitoring library are inserted into the program. This can either be done indhece
code by the compiler or specialized tools, or can be donedrottject code. While the
first approach allows to instrument more types of regionsekample, loops and vector
statements, the latter allows to measure data for programsaano source code is avail-
able. The monitoring library collects the information amidla it to special counters for the
specific region.

Tracing is a technique that collects information for eacbngvThis results, for exam-
ple, in very detailed information for each instance of a sutine and for each message
sent to another process. The information is stored in sjesibtrace records for each
event type. For example, for each start of a send operatiertjme stamp, the message
size and the target process can be recorded, while for thefethe operation, the time
stamp and bandwidth are stored.

The trace records are stored in the memory of each processranditten to a trace
file either when the buffer is filled up or when the program teates. The individual trace
files of the processes are merged together into one tracediézexl according to the time
stamps of the events.

Profiling has the advantage to be of moderate size while tirdoemation tends to
be very large. The disadvantage of profiling is that it is noé fgrained; the behavior
of individual instances of subroutines can for example refrvestigated since all the
information has been summed up.

Widely used performance tools include TALfrom the University of Oregon, Vam-
pir?223from the Technical University of Dresden, and Scal&sé&from the Jillich Super-
computing Centre.

7 Summary

This article gave an overview of parallel programming medes well as programming
tools. Parallel programming will always be a challenge foygspammers. Higher-level
programming models and appropriate programming tools facijitate the process but do
not make it a simple task.

While programming in MPI offers the greatest potential parfance, shared memory
programming with OpenMP is much more comfortable due to tbbaj style of the re-
sulting program. The sequential control flow among the peldalops and regions matches
much better with the sequential programming model all ttogypErmmers are trained for.

Although programming tools were developed over years, thieeat situation seems
not to be very satisfying. Program debugging is done peathra technique that does not
scale to larger numbers of processors. Performance as&bpés do also suffer scalability
limitations and, in addition, the tools are complicated s&.uThe programmers have to
be experts for performance analysis to understand potgraitormance problems, their
proof conditions, and their severity. In addition they hawée experts for powerful but
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also complex user interfaces.

Future research in this area has to try to automate perfarenanalysis tools, such
that frequently occurring performance problems can betifieth automatically. First au-
tomatic tools are already available: ParaDymom the University of Wisconsin-Madison
and KOJAKS/ScalascH 18 from the Jilich Supercomputing Centre.

A second important trend that will effect parallel programgin the future is the move
towards clustered shared memory systems with nodes dogsigtmulti-core processors.
This introduces a potentially 3-level parallelism hierar¢machine - node - processor).
Clearly, a hybrid programming approach will be applied oostihsystems for best perfor-
mance, combining message passing between the individualig#ides and shared memory
programming in a node. This programming model will lead teremore complex pro-
grams and program development tools have to be enhancedaoldo#o help the user in
developing these codes.

A promising approach to reduce complexity in parallel pesgming in the future are
so-calledpartitioned global address spa¢®GAS) languagé$, such as Unified Parallel
C (UPC) or Co-array Fortran (CAF) which provide simple metmslistribute data and
communicate implicitly via efficient one-sided communiocat

Appendix

This appendix provides three versions of a simple exampéesaientific computation. It
computes the value af by numerical integration:

4

1 .
= [ r@ie win 1@ = 5

This integral can be approximated numerically by the midpnile:

n .
TR l/ flx;) with z; = w for i=1,...,n
n Ji n

Larger values of the parametewill give us more accurate approximationsmofThis
is not, in fact, a very good way to computgbut it makes a good example because it has the
typical, complete structure of a numerical simulation peryg (initialization - loop-based
calculation - wrap-up), and the whole source code fits onepage or slide.

To parallelize the example, each process/thread compateadds up the areas for a
different subset of the rectangles. At the end of the conjmuntaall of the local sums are
combined into a global sum representing the value.of

MPI Version of Example Program

The following listing shows a Fortran90 implementation loé tr numerical integration
example parallelized with the help of MPI.
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program pi_-mpi

implicit none

include 'mpif.h’

integer 2> i, n, ierr, myrank, numprocs
double precision :: f, x, sum, pi, h, mypi

call MPI_Init(ierr)
call MPI_.Commrank (MPLCOMM WORLD, myrank, ierr)
call MPI_Commsize (MPLICOMMWORLD, numprocs, ierr)

if ( myrank == 0 ) then
write(x,x) "number.of_intervals?”
read(*,+) n

end if

call MPI_Bcast(n, 1, MPINTEGER, 0, MPICOMMWORLD, ierr)

i — 0.5d0) % h

myrank+1, n, numprocs
(
= sum + (4.d0/(1.d0 + »x))

call MPI_Reduce(mypi, pi, 1, MPDOUBLE PRECISION, &
MPI_.SUM, 0, MPLCOMMWORLD, ierr)

if ( myrank == 0 ) then
write(x, fmt="(A, .F16.12)") "Value.of_pi_is.”, pi
endif

call MPI_Finalize(ierr)
end program

First, the MPI system has to be initialized (lines 7 to 9) agmintinated (line 33) with
the necessary MPI calls. Next, the input of parameters (lihéo 14) and the output of
results (lines 29 to 31) has to be restricted so that it is emlcuted by one processor.
Then, the input has to be broadcasted to the other procgdiserd6). The biggest (and
most complicated) change is to program the distribution afvand data. The do-loop in
line 20 has to be changed so that each processor only casaatl summarizes its part of
the distributed computations. Finally, the reduce callne$ 26/27 collects the local sums
and delivers the global sum to processor 0.
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Sequential and OpenM P Version of Example Program

The following listing shows the corresponding implemeiotabf ther integration exam-
ple using OpenMP. As one can see, because of the need toitxpliogram all aspects
of the parallelization, the MPI version is almost twice asdas the OpenMP version.
Although this is clearly more work, it gives a programmer fmugore ways to express
and control parallelism. Also, the MPI version will run otlehds of parallel computers,
while OpenMP is restricted to the shared memory architectur

As OpenMP is based on directives (which are plain commerasion-OpenMP com-
pilation mode), it is at the same time also a sequential impl&ation of the example.

program pi_omp

implicit none

integer i, n

double precision :: f, x, sum, pi, h

write(x,x) "number.of_intervals?”
read (x,*) n

h =1.0d0 / n
sum = 0.0dO
I$omp parallel do private(i,x) reduction(+:sum)
doi=1,n
x = (i — 0.5d0) % h
sum = sum + (4.d0/(1.d0 + »x))
end do
pi = h % sum

write(x, fmt="(A, _.F16.12)") "Value.of_pi.is.”, pi
end program

The OpenMP directive in line 11 declares the following dogas parallel resulting in
a concurrent execution of loop iterations. As the variablasdx are used to store values
during the execution of the loop, they have to be declaredhfwj so that each thread
executing iterations has its own copy. The varidbles only read, so it can be shared.
Finally, it is specified that there is a reduction (using &idd) over the variablsum
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