001     37456
005     20180210134301.0
024 7 _ |2 DOI
|a 10.1021/es035061m
024 7 _ |2 WOS
|a WOS:000221502800028
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |2 ISSN
|a 1520-5851
037 _ _ |a PreJuSER-37456
041 _ _ |a eng
082 _ _ |a 050
084 _ _ |2 WoS
|a Engineering, Environmental
084 _ _ |2 WoS
|a Environmental Sciences
100 1 _ |a Wolters, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1807
245 _ _ |a Pesticide volatilization from plants: improvement of the PEC model PELMO based on a boundary-layer concept
260 _ _ |c 2004
|a Columbus, Ohio
|b American Chemical Society
300 _ _ |a 2885 - 2893
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Environmental Science and Technology
|x 0013-936X
|0 1865
|v 38
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Calculation of pesticide volatilization from plants as an integral component of pesticide fate models is of utmost importance, especially as part of PEC(predicted environmental concentrations) models used in the registration procedures for pesticides. A mechanistic approach using a laminar air-boundary layer concept to predict volatilization from plant surfaces was compared to data obtained in a wind-tunnel study after simultaneous application of parathion-methyl, fenpropimorph, and quinoxyfen to winter wheat. Parathion-methyl was shown to have the highest volatilization during the wind-tunnel study of 10 days (29.2%). Volatilization of quinoxyfen was about 15.0%, revealing a higher volatilization tendency than fenpropimorph (6.0%), which is attributed to enhanced penetration of fenpropimorph counteracting volatilization. Predictions of the boundary-layer approach were markedly influenced by the selected values for the equivalent thickness of the boundary layer and rate coefficients, thus indicating that future improvements of the approach will require a deeper understanding of the kinetics of the underlying processes, e.g. phototransformation and penetration. The boundary-layer volatilization module was included in the European registration model PELMO, enabling simultaneous calculation of volatilization from plants and soil. Application of PELMO to experimental findings were the first comprehensive PEC model calculations to imply the relevant processes affecting the postapplication fate of pesticides.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Leistra, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Linnemann, V.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB948
700 1 _ |a Klein, M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Schäffer, A.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Vereecken, H.
|b 5
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |0 PERI:(DE-600)1465132-4
|a 10.1021/es035061m
|g Vol. 38, p. 2885 - 2893
|p 2885 - 2893
|q 38<2885 - 2893
|t Environmental Science & Technology
|v 38
|x 0013-936X
|y 2004
909 C O |o oai:juser.fz-juelich.de:37456
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2004
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 0
970 _ _ |a VDB:(DE-Juel1)46069
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21