
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik
D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

EPILOG Binary Trace-Data Format
(Version 1.1)

Felix Wolf*, Bernd Mohr

FZJ-ZAM-IB-2004-06

May 2004

(last change: 03.05.2004)

(*) University of Tennessee

EPILOG
Binary Trace-Data Format

Version 1.1 / May 3, 2004

Felix Wolf, Bernd Mohr

Copyright (c) 2004 Forschungszentrum Jülich
Copyright (c) 2004 University of Tennessee

Contents

1 Introduction 3

2 Data Types 4

3 File Structure 5

4 Definition Records 6

4.1 Strings . 6

4.2 Locations . 7

4.3 Source-Code Entities . 9

4.4 Performance Metrics . 11

4.5 MPI Communicators . 14

4.6 Clock Synchronization . 15

4.7 Number and Position of Records . 15

5 Event Records 15

5.1 Programming-Model–Independent Events 16

5.2 MPI-Related Events . 17

5.3 OpenMP-Related Events . 18

5.4 Tracing Events . 20

6 Symbolic Constants 21

7 Revision History 22

7.1 Revision 1.1 . 22

1 Introduction

The development of parallel applications is a very complex and expensive process.
This is essentially a result of the close relationship among the algorithm to be im-
plemented on the one hand and the properties of the target platform in conjunction
with the employed programming model on the other hand. Only when all three
components of a parallel solution fit together in the right way, the application is
able to achieve the desired performance.

A distinctive characteristic of modern smp-cluster architectures is the complex hi-
erarchical structure of their hard- and software components, which enables the use
of different programming models such as mpi [5], Openmp [6], or even the combi-
nation of the two in the same application. Naturally, the performance optimization
of such applications is very complicated and involves incremental performance tun-
ing through successive observations and code refinements. A critical step in this

3

procedure is to locate and explain inefficient performance behavior based on the
performance data that have been collected. The quality of the resulting explana-
tions depends to a large extent on the informative value of these data.

Event tracing provides a very fine grained view of the performance behavior of
parallel applications. In contrast to pure execution-time profiling, event tracing
preserves the temporal and spatial order of individual events, which may indicate
the presence of certain performance properties in an application. The success of
many powerful performance tools such as vampir [1] or Nupshot [4] proved the
usefulness of event tracing for message-passing applications.

The epilog (Event Processing, Investigating, and Logging) binary trace data format
has been designed to extend the scope of event tracing to smp-cluster architectures
by providing a uniform data representation suitable for mpi, Openmp, and hybrid
applications. epilog maps events onto their location within the hierarchical hard-
ware as well as to their process and thread of execution. It supports storage of all
necessary source-code and call-site information, recording of performance metrics,
such as hardware counters, and marking of collectively executed operations for both
mpi and Openmp. In addition to clusters of smp nodes, target systems also can be
meta-computing environments as well as more traditional non-cluster or non-smp

systems.

This document contains a complete specification of the epilog data format. It is
intended for both the design of instrumentation systems that create event traces as
output as well as the design of performance tools that use event traces as input.
The remainder of the document is organized as follows. Section 2 deals with the
layout of basic data types. Section 3 explains the overall structure of an epilog

file, whereas Sections 4 and 5 present the individual record types in detail. Finally,
Section 6 defines the symbolic constants used in the preceding sections.

2 Data Types

epilog defines three unsigned integer types, one floating point type and strings:

• elg ui1: unsigned integer of 1 byte size

• elg ui4: unsigned integer of 4 bytes size

• elg ui8: unsigned integer of 8 bytes size

• elg d8: IEEE 754 double precision floating point of 8 bytes size

• elg str: zero terminated sequence of 1 byte ASCII characters

Additionally, epilog allows the creation of fixed sized vectors of arithmetic types.
E.g. ’elg ui4 vec[3]’ specifies a sequence of three elg ui4 values.

Finally, epilog defines two symbolic constants indicating the byte order of arith-
metic types with the usual semantics:

4

• ELG LITTLE ENDIAN

• ELG BIG ENDIAN

3 File Structure

An epilog trace-data file consists of a header followed by a sequence of records.
The header (Fig. 1) consists of the zero terminated string ”EPILOG” followed by
two bytes containing the major and minor epilog version number and another byte
indicating the byte order used for arithmetic types, that is, its value is equal to one
of the symbolic constants defined in the previous section.

P I L O GE \0
Byte
Order Records

Major
VNr

Minor
VNr

Figure 1: The epilog file structure.

Each record (Fig. 2) consists of the record header followed by the record body. The
header contains two bytes. The first byte contains the length of the record body in
bytes without these two leading bytes. The second byte contains the record type.

Type BodyLength

Figure 2: The epilog record structure.

epilog distinguishes between definition records and event records. Definition
records define identifiers for objects to be referenced by other records. In particular,
event records can be kept small by referencing certain objects instead of specifying
these objects as part of the event record. Such objects may be source-code regions
or file names. Event records represent run-time events and always contain a location
identifier as well as a time stamp. A record is of a certain record type if the value
of its type byte is equal to a symbolic constant with the same name as the record
type.

In order to ease the processing of epilog trace-data files, it is recommended to place
all definition records directly after the trace-file header; that is, the first event record
should follow the last definition record (Fig. 3). In any case, the end of definition
records is marked by a special termination record.

Header Definition Records Event Records

Figure 3: The epilog record order.

5

4 Definition Records

Definition records deal with the following entities of a parallel application:

• Strings

• Locations

• Source-code entities such as regions and files

• Performance metrics

• mpi communicators

epilog uses identifiers to reference objects such as source-code regions from other
records. Identifiers are integer numbers of type elg ui4. If an identifier has
ELG NO ID (= 232 − 1) as its value, it does not refer to an object; that is, the
expected information is not present. The objects referenced by an identifier are
specified in a definition record. The numeric value of an identifier should not have
a specific meaning so that consistently changing identifier values should not mod-
ify the semantics of an epilog file. The only exceptions are process and thread
identifiers which refer to particular objects of the programming models.

Sometimes, identifiers are used without defining them in a definition record (e.g., a
process identifier). In this case, the identifier is only used to distinguish an object
from others of the same type.

To ease the processing of epilog files, the identifiers used for a certain type of
objects must range from 0 to n− 1, where n is the total number of different objects
having that type.

4.1 Strings

Strings are necessary to assign a name or a description to an object. All record types
that involve names or other descriptions do not contain the corresponding strings
directly. Instead, they contain an identifier pointing to a string defined in a separate
string-definition record.

Since the length of strings may exceed the maximum record body length, it is pos-
sible to use optional extension records, which must immediately follow the string
definition record to which they refer.

ELG STRING

This record defines an identifier strid for a zero terminated string. If string

does not fit into one record; that is, if its length including the terminating zero
exceeds 250 bytes, additional ELG STRING CNT records can be used. In this case,
cntc contains the number of continuation records, otherwise cntc is zero. The

6

terminating zero of strings that are defined using more than one record is located
in the last continuation record. The identifier can be used by subsequent records to
reference the defined string.

ELG STRING

elg ui4 strid string identifier
elg ui1 cntc number of continuation records
elg str str string

ELG STRING CNT

According to the cntc field of the preceding ELG STRING record this record contains
either the zero terminated rest of the string or a substring, which is continued in
the immediately following ELG STRING CNT record.

ELG STRING CNT

elg str str continued string

4.2 Locations

A location identifies a control flow carrying an activity of the executing application.
It is described by a tuple (machine, node, process, thread). The different location
coordinates are given by identifiers ranging from 0 to ni−1, where ni is the maximum
number of different values for coordinate i.

Machine and node characterize the physical part of a location. A machine is de-
scribed by a number of nodes. A node is described by a number of cpus. A machine
identifier is globally unique, whereas a node identifier is only unique with respect to
its machine.

Process and thread characterize the programming-model–related part of a location.
A process identifier is globally unique, whereas a thread identifier is only unique
with respect to its process. For mpi/Openmp applications, the process identifier is
equal to the mpi rank in MPI COMM WORLD and the thread identifier is equal to the
Openmp thread number. Openmp nested parallelism is currently not supported.

epilog requires each machine to have at least one node and each process to have at
least one thread. So machines that can not be divided into nodes are considered to
have one node making up the entire machine. And also processes without threads
are considered to have one thread making up the whole process. The identifier of
these pseudo nodes and threads should be zero.

It is possible to assign a name to parts of a location, e.g. to a machine or a process.
The names neither have to be unique nor they are required. For example, they can
be used to assign roles to processes or to link a machine to a physical host.

7

ELG MACHINE

This record assigns a number of nodes and an optional name to a machine identifier.
The number of nodes is the maximum number of nodes available on this machine
to an arbitrary application. If this number cannot be determined, a number greater
than or equal to the number of nodes actually used can be chosen. If the machine
has no name, the identifier mnid should be set to ELG NO ID.

ELG MACHINE

elg ui4 mid machine identifier
elg ui4 nodec number of nodes
elg ui4 mnid machine-name identifier or ELG NO ID

ELG NODE

This record assigns a number of cpus and an optional name to a node identifier.
The number of cpus is the maximum number of cpus available on this node to an
arbitrary application. If this number cannot be determined, a number greater than
or equal to the number of cpus actually used can be chosen. The machine to which
the node belongs is specified by the machine identifier mid. If the node has no name,
the identifier nnid should be set to ELG NO ID. The field cr specifies a node’s clock
rate. This information might be useful if the event trace contains any counted cycles
as part of the event records. If the clock rate is not needed, this field can be set to
zero.

ELG NODE

elg ui4 nid node identifier
elg ui4 mid machine identifier
elg ui4 cpuc number of cpus
elg ui4 nnid node-name identifier or ELG NO ID

elg d8 cr number of clock cycles per second

ELG PROCESS

This record assigns a name to a process. For example, one process can be named
server, whereas another processes can be named client. This record is optional; that
is, a process identifier can be used without defining a name.

ELG PROCESS

elg ui4 pid process identifier
elg ui4 pnid process-name identifier or ELG NO ID

ELG THREAD

This record assigns a name to a thread. For example, one thread of a process can be
named master, whereas another thread of that process can be named worker. This

8

record is optional; that is, a thread identifier can be used without defining a name.
The process to which the thread belongs is specified by the process identifier pid.

ELG THREAD

elg ui4 tid thread identifier
elg ui4 pid process identifier
elg ui4 tnid thread-name identifier or ELG NO ID

ELG LOCATION

This record assigns a 4-tuple of coordinates to a location identifier lid. The meaning
of these coordinates is as described above. The location identifier can be used by
subsequent records to reference the defined location.

ELG LOCATION

elg ui4 lid location identifier
elg ui4 mid machine identifier
elg ui4 nid node identifier
elg ui4 pid process identifier
elg ui4 tid thread identifier

4.3 Source-Code Entities

ELG FILE

This record defines an identifier fid for a source file. The file name is referenced
by fnid. The file identifier can be used by subsequent records as a reference to this
file.

ELG FILE

elg ui4 fid file identifier
elg ui4 fnid file-name identifier

ELG REGION

This record defines an identifier rid for a code region. The region name is referenced
by rnid. The region identifier can be used by subsequent records as a reference
to this region. The source-code location of the region is specified by fid, begln,
and endln. If the source-file information is not available, fid is set to ELG NO ID.
Missing line numbers are indicated by the value ELG NO LNO. It is possible to provide
an optional region description using an additional string identifier rdid.

9

ELG REGION

elg ui4 rid region identifier
elg ui4 rnid region-name identifier
elg ui4 fid source-file identifier or ELG NO ID

elg ui4 begln begin line number
elg ui4 endln end line number
elg ui4 rdid region-description identifier or ELG NO ID

elg ui1 rtype region type

The last data field rtype specifies a region type. The region type is used to dis-
tinguish between different syntactical kinds of regions such as functions or Openmp

constructs. It is specified by using one of the following symbolic constants:

• ELG FUNCTION

• ELG LOOP

• ELG USER REGION

• ELG OMP PARALLEL

• ELG OMP LOOP

• ELG OMP SECTIONS

• ELG OMP SECTION

• ELG OMP WORKSHARE

• ELG OMP SINGLE

• ELG OMP MASTER

• ELG OMP CRITICAL

• ELG OMP ATOMIC

• ELG OMP BARRIER

• ELG OMP IBARRIER (implicit barrier)

• ELG OMP FLUSH

• ELG OMP CRITICAL SBLOCK

• ELG OMP SINGLE SBLOCK

• ELG UNKNOWN

The last one can be used if an instrumentation system is not able to provide a region
type.

10

ELG CALL SITE

This record defines an identifier csid for a call site. A call site is a source-code
location where the control flow may move from one region to another region. It
does not necessarily to be a function call site, instead, it can also be a loop entry,
where the control flow may move from the enclosing region to the loop region. The
call-site identifier can be used by subsequent records as a reference to this call site.
The source-code location of the call site is specified by fid and lno. The region to
be entered (i.e., the callee) is specified by erid, while the region to be left (i.e., the
caller) is specified by lrid. The latter one is optional.

ELG CALL SITE

elg ui4 csid call-site identifier
elg ui4 fid source-file identifier
elg ui4 lno line number
elg ui4 erid region identifier of the region to be entered
elg ui4 lrid region identifier of the region to be left or ELG NO ID

4.4 Performance Metrics

Frequently, it is desirable to include additional performance metrics into a trace file.
For example, hardware performance counters have been proved to be a useful diag-
nostic tool in assessing the performance of microprocessors as well as applications
running on them. Libraries, such as papi [3] and pcl [2], provide uniform access to
these counters and simplify the design of performance tools based on them. In addi-
tion, for performance analysis it might also be useful to consider system parameters,
such as the amount of memory allocated at a time.

The epilog trace-data format supports the recording of different performance met-
rics. These values may be recorded as part of the ELG ENTER, ELG ENTER CS, and
ELG EXIT event records. epilog provides a definition-record type to declare a per-
formance metric and a definition-record type to specify the order in which the cor-
responding values will later appear in event records.

The values of counters usually refer to a time interval during which the counting took
place, whereas the values of system parameters, such as size of memory allocation,
often refer to a point in time. epilog supports both values referring to an interval
as well as values referring to a single point in time.

Frequently, application developers are also interested in occurrences-per-time ratios
(e.g., instructions per second). Although epilog supports the storage of these rates
in the same way it does support the storage of plain counters, the computation
of rates at run time may introduce undesirable overhead, which can be avoided in
the presence of timestamped events. Instead, rates should be always computed by
converting a plain counter representation into a rate representation offline.

11

ELG METRIC

This record defines an identifier metid for a metric, whose values may be stored
in event records. It specifies the metric’s name metnid, an optional more detailed
description metdid, and the metric’s data type metdtype. Whereas the name should
indicate the kind of metric (e.g., floating-point instruction), the description may be
used, for example, to inform about platform-specific characteristics. Each metric is
stored in an 8 byte data type - either elg ui8 or elg d8. To specify which data type
is used for a particular metric, the metdtype field may carry one of the following
two symbolic constants:

• ELG INTEGER

• ELG FLOAT

The flag metmode specifies whether the values to be measured represent a number
of event occurrences, a number of event occurrences per time (i.e., a rate), or the
current value of a system parameter. Whereas the first two modes refer to a time
interval, the last mode refers to a point in time. The flag metmode may carry one of
the following symbolic constants:

• ELG COUNTER: number of event occurrences

• ELG RATE: number of event occurrences per time

• ELG SAMPLE: current value of a system parameter

In the case of the first two modes, the flag metiv can be used to specify the interval
a value represents. Specifying the interval since start of measurement will result in
monotonically increasing values.

• ELG START: interval since start of measurement on a location

• ELG LAST: interval since last measurement on a location

• ELG NEXT: interval to next measurement on a location

Since the availability and characteristics of performance counters and system pa-
rameters may change as new microprocessor architectures emerge, epilog does not
predefine any metrics to be recorded in an event trace.

ELG METRIC

elg ui4 metid metric identifier
elg ui4 metnid metric-name identifier
elg ui4 metdid metric-description identifier or ELG NO ID

elg ui1 metdtype metric data type
elg ui1 metmode metric mode
elg ui1 metiv time interval to which the metric refers

12

However, to encourage tool interoperability, epilog recommends to use predefined
names for commonly used hardware counters. Rates based on these counters can
be specified using the predefined counter name while having the flag metmode set to
ELG RATE.

Memory hierarchy

• L<n><d> ACCESS: level n cache accesses

• L<n><d> READ: level n cache reads

• L<n> WRITE : level n cache writes

• L<n><d> HIT: level n cache hits

• L<n><d> READ HIT: level n cache read hits

• L<n> WRITE HIT: level n cache write hits

• L<n><d> MISS: level n cache misses

• L<n><d> READ MISS: level n cache read misses

• L<n> WRITE MISS: level n cache write misses

• TLB<d> HIT: translation-lookaside-buffer hits

• TLB<d> MISS: translation-lookaside-buffer misses

These counter types denote cache and translation-lookaside-buffer accesses.
<n> can be replaced by the cache-level number, <d> either by “ I” for instruc-
tion, “ D” for data accesses, or it can be omitted in cases where the distinction
is irrelevant.

Instructions

• INSTRUCTION: instructions completed

• INTEGER: integer instructions completed

• FLOATING POINT: floating-point instructions completed

• LOAD STORE: load or store instructions completed

• LOAD: load instructions completed

• STORE: store instructions completed

• COND STORE: conditional store instructions completed

• COND STORE SUCCESS: successful conditional stores

• COND STORE UNSUCCESS: unsuccessful conditional stores

• COND BRANCH: conditional branches

• COND BRANCH TAKEN: conditional branches taken

• COND BRANCH NOTTAKEN: conditional branches not taken

• COND BRANCH PRED: conditional branches correctly predicted

13

• COND BRANCH MISPRED: conditional branches mispredicted

Cycles

• CYCLES: cycles on behalf of the process/thread

• ELAPSED CYCLES: elapsed cycles

Idle Units

• INTEGER UNIT IDLE: cycles integer units are idle

• FLOAT UNIT IDLE: cycles floating-point units are idle

• BRANCH UNIT IDLE: cycles branch units are idle

• LOADSTORE UNIT IDLE: cycles load-store units are idle

Stalls

• STALL MEMORY ACCESS: cycles stalled waiting for memory access

• STALL MEMORY READ: cycles stalled waiting for memory read

• STALL MEMORY WRITE: cycles stalled waiting for memory write

The metrics that have been defined in an event trace using this record will later
appear in event records in the order given by the metric identifiers. That is,
the first metric value in an event record corresponds to the metric whose metid
is zero, the second metric value in an event record corresponds to the metric
whose metid is one, etc.. Note that all the metrics defined in an event trace
need to consistently appear in all ELG ENTER, ELG ENTER CS, and ELG EXIT

event records in the trace.

4.5 MPI Communicators

ELG MPI COMM

This record defines an identifier cid for an mpi communicator. The communicator
identifier can be used by subsequent records as a reference to this communicator.
The communicator is characterized by its mpi group and an optional name. The
group is given as a bit string grpv[] consisting of grpc bytes. The nth bit of the bit
string being set indicates that the process n; that is, the rank n of MPI COMM WORLD

belongs to this group. If the size of MPI COMM WORLD is not divisible by eight, the
unused bits of the last byte are ignored.

ELG MPI COMM

elg ui4 cid communicator identifier
elg ui4 grpc size of the bit string in bytes
elg ui1 grpv[grpc] bit string defining the group

Future versions of epilog may include source-code information related to mpi com-
municators.

14

4.6 Clock Synchronization

ELG OFFSET

In system relying only on local clocks the time stamps of event records from different
locations can be adjusted based on the information contained in this record. It is
temporarily used in temporary trace files containing time stamps local to a single
location. A trace file with global time stamps does not contain records of this type.

It is assumed, that the local clocks differ in offset and frequency, and that the offset
between two clocks can be described as a linear function of the time. Without loss
of generality, one local clock is assumed to provide the global time. Knowing the
offset between an arbitrary local clock and the global clock for two different points
in time allows the definition of the global time as a function of the local time. Of
course, the accuracy of this method can be increased by choosing the highest possible
temporal distance between these points in time, so offsets should be measured once
at program initialization and once at program termination.

A record of this type provides the offset between the local time and the global
time at ltime local time. The unit of time values is always seconds.

ELG OFFSET

elg d8 ltime local time
elg d8 offset offset to global time = global time - local time

4.7 Number and Position of Records

ELG LAST DEF

This record indicates that all record following this record are event records. It has
no data fields. A program collecting static information from a trace file can stop
searching for definition records as soon as this record appears.

ELG NUM EVENTS

This record provides the number of event records contained in a trace file. It can
be used to implement progress reports while processing a trace file.

ELG NUM EVENTS

elg ui4 eventc number of event records

5 Event Records

All event records provide a location identifier and a time stamp. The time stamp
is of type elg d8. The unit for time stamps is always seconds. epilog provides
records for the following kinds of events:

15

• Entering and leaving regions

• mpi point-to-point communication

• mpi collective communication

• Openmp fork and join

• Openmp parallel execution

• Openmp lock synchronization

• Tracing events (i.e., events related to the tracing system)

When an optional data field is omitted, the following data fields are directly placed
after the last used data field. So the tables only specify the relative order of the data
fields and not their absolute positions. The presence of optional data fields can be
derived from the total record length and - if necessary - from preceding definition
records.

5.1 Programming-Model–Independent Events

The following three record types are used for entering or leaving a code region.
They provide a vector metv[] containing the values of previously specified per-
formance metrics. The number and order of values is specified by the number of
ELG METRIC records and the order of their corresponding metric identifiers. If there
is no ELG METRIC record, metv[] is omitted. But if there are any metric defined
using ELG METRIC records, their values have to be present in all records of these
types.

ELG ENTER

This record indicates that the program enters a code region denoted by rid.

ELG ENTER

elg ui4 lid location identifier
elg d8 time time stamp
elg ui4 rid region identifier of the region being entered
elg ui8 | elg d8 metv[] metric values

ELG ENTER CS

This record indicates that the program enters a code region from a call site denoted
by csid. This record should be used instead of ELG ENTER if the instrumented point
is the call site and not the region entry.

16

ELG ENTER CS

elg ui4 lid location identifier
elg d8 time time stamp
elg ui4 csid call-site identifier of the call site being executed
elg ui8 | elg d8 metv[] metric values

ELG EXIT

This record indicates that the program leaves the last code region being entered.

ELG EXIT

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values

5.2 MPI-Related Events

The mpi-related events supported by epilog include sending a message, receiving
a message, and leaving a collective operation.

ELG MPI SEND

This record indicates the dispatch of a message. dlid specifies the destination
location of the message. cid is the identifier of the mpi communicator used for
message transfer. tag is the message tag and sent contains the number of bytes
sent.

ELG MPI SEND

elg ui4 lid location identifier
elg d8 time time stamp
elg ui4 dlid destination-location identifier of message
elg ui4 cid communicator identifier
elg ui4 tag message tag
elg ui4 sent message length in bytes

ELG MPI RECV

This record indicates the receipt of a message. slid specifies the source location
of the message. cid is the identifier of the mpi communicator used for message
transfer. tag is the message tag. The number of bytes received can be derived from
the corresponding ELG MPI SEND record.

17

ELG MPI RECV

elg ui4 lid location identifier
elg d8 time time stamp
elg ui4 slid source-location identifier of message
elg ui4 cid communicator identifier
elg ui4 tag message tag

ELG MPI COLLEXIT

This record indicates that the program leaves an mpi collective operation. It is
used instead of an ELG EXIT event, when a collective operation instance is left.
Therefore, it offers all data fields a simple ELG EXIT provides. But in contrast to
pure ELG EXIT events it has additional data fields, which deliver information on
the communication done during the collective operation. rlid specifies the root
location of the operation. cid is the identifier of the mpi communicator used for the
collective operation. sent and recvd specify the amount of bytes sent or received
by the location during this particular collective-operation instance.

ELG MPI COLLEXIT

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values
elg ui4 rlid root-location identifier of the operation
elg ui4 cid communicator identifier
elg ui4 sent bytes sent
elg ui4 recvd bytes received

5.3 OpenMP-Related Events

The Openmp-related events supported by epilog include fork and join operations,
acquiring and releasing a lock, and leaving a region executed in parallel (i.e., an
Openmp parallel construct).

ELG OMP FORK

This record indicates that the master thread creates a team of threads, which exe-
cute in parallel from that time on. The location of the event is always the master
thread. Event records of non-master threads are only allowed to appear between an
ELG OMP FORK record and an ELG OMP JOIN record, which is described below. How-
ever, records generated by non-master threads that indicate events of the tracing
system as described in Section 5.4 are allowed to appear also outside fork and join
records.

ELG OMP FORK

elg ui4 lid location identifier
elg d8 time time stamp

18

ELG OMP JOIN

This record indicates that the non-master threads of a team finish their execution.
Only the master thread continues its execution. The location of the event is always
the master thread. Event records of non-master threads are only allowed to appear
between an ELG OMP FORK record, which is described above, and an ELG OMP JOIN

record. However, records generated by non-master threads that indicate events of
the tracing system as described in Section 5.4 are allowed to appear also outside
fork and join records.

ELG OMP FORK

elg ui4 lid location identifier
elg d8 time time stamp

ELG OMP ALOCK

This record indicates that a simple or nested Openmp lock is acquired. lkid is the
identifier of the lock being set.

ELG OMP ALOCK

elg ui4 lid location identifier
elg d8 time time stamp
elg ui4 lkid identifier of the lock being acquired

ELG OMP RLOCK

This record indicates that a simple or nested Openmp lock is released. lkid is the
identifier of the lock being released.

ELG OMP RLOCK

elg ui4 lid location identifier
elg d8 time time stamp
elg ui4 lkid identifier of the lock being released

ELG OMP COLLEXIT

This record indicates that the program leaves an Openmp parallel region. Openmp

parallel regions are defined in the source code using Openmp parallel constructs. The
record is used instead of an ELG EXIT record, when such a parallel region instance
is left. Therefore, it offers all data fields a simple ELG EXIT provides.

ELG OMP COLLEXIT

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values

19

5.4 Tracing Events

The next two record types are used, when tracing is temporarily turned off. When
it is turned on again, the application must execute on the same stack level with
respect to traced regions. Also all message sent during that interval must be received
during that interval and vice versa. That means turning off tracing is not allowed to
introduce any inconsistencies in the event trace. The last two record types are used,
when the trace buffer is dumped to a file. They are placed like normal region enters
and exits and contain an array of metric values analogously to their specification.

ELG LOG OFF

This record indicates that tracing is temporarily turned off.

ELG LOG OFF

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values

ELG LOG ON

This record indicates that tracing is turned on again. It must follow a preceding
ELG LOG OFF at the same location.

ELG LOG ON

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values

ELG ENTER DUMP

This record indicates that the tracing system starts writing out its buffer.

ELG ENTER DUMP

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values

ELG EXIT DUMP

This record indicates that the tracing system finishes writing out its buffer. It must
follow a preceding ELG ENTER DUMP at the same location.

ELG EXIT DUMP

elg ui4 lid location identifier
elg d8 time time stamp
elg ui8 | elg d8 metv[] metric values

20

6 Symbolic Constants

This section defines the symbolic constants used in the preceding sections. All values
are given as decimal numbers.

Symbolic Constants

Byte order
ELG LITTLE ENDIAN 1
ELG BIG ENDIAN 2

Absent information
ELG NO ID 232 − 1
ELG NO LNO 232 − 1

Definition record types
ELG STRING 1
ELG STRING CNT 2
ELG MACHINE 3
ELG NODE 4
ELG PROCESS 5
ELG THREAD 6
ELG LOCATION 7
ELG FILE 8
ELG REGION 9
ELG CALL SITE 15
ELG METRIC 10
ELG MPI COMM 11
ELG OFFSET 12
ELG LAST DEF 13
ELG NUM RECS 14

Event record types
ELG ENTER 101
ELG ENTER CS 111
ELG EXIT 102
ELG MPI SEND 103
ELG MPI RECV 104
ELG MPI COLLEXIT 105
ELG OMP FORK 106
ELG OMP JOIN 107
ELG OMP ALOCK 108
ELG OMP RLOCK 109
ELG OMP COLLEXIT 110

ELG LOG OFF 201
ELG LOG ON 202
ELG ENTER DUMP 203

21

Symbolic Constants (cont.)

ELG EXIT DUMP 204

Region types
ELG UNKNOWN 0

ELG FUNCTION 1
ELG LOOP 2
ELG USER REGION 3

ELG OMP PARALLEL 11
ELG OMP LOOP 12
ELG OMP SECTIONS 13
ELG OMP SECTION 14
ELG OMP WORKSHARE 15
ELG OMP SINGLE 16
ELG OMP MASTER 17
ELG OMP CRITICAL 18
ELG OMP ATOMIC 19
ELG OMP BARRIER 20
ELG OMP IBARRIER 21
ELG OMP FLUSH 22
ELG OMP CRITICAL SBLOCK 23
ELG OMP SINGLE SBLOCK 24

Performance metrics
ELG INTEGER 0
ELG FLOAT 1

ELG COUNTER 0
ELG RATE 1
ELG SAMPLE 2

ELG START 0
ELG LAST 1
ELG NEXT 2

7 Revision History

This section describes the difference between revisions of the epilog format.

7.1 Revision 1.1

The changes include a redesign of the hardware-counter support features, support
for call-site tracing, and the addition of a new definition record telling the number

22

of event records in a trace.

• ELG PCNTS replaced by ELG METRIC record

• metv[] field added to the ELG LOG OFF, ELG LOG ON, ELG ENTER DUMP, and
ELG EXIT DUMP records.

• cr field added to the ELG NODE record

• ELG CALL SITE record added

• ELG ENTER CS record added

• ELG NUM EVENTS record added

• Semantics of the nodec field in the ELG MACHINE record modified

• Semantics of the cpuc field in the ELG NODE record modified

References

[1] A. Arnold, U. Detert, and W.E. Nagel. Performance Optimization of Parallel
Programs: Tracing, Zooming, Understanding. In R. Winget and K. Winget,
editors, Proc. of Cray User Group Meeting, pages 252–258, Denver, CO, March
1995.

[2] R. Berrendorf and H. Ziegler. PCL - The Performance Counter Library: A
Common Interface to Access Hardware Performance Counters on Micropro-
cessors. Technical Report IB-9816, Forschungszentrum Jülich, October 1998.
http://www.fz-juelich.de/zam/PCL/.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable Program-
ming Interface for Performance Evaluation on Modern Processors. The Inter-

national Journal of High Performance Computing Applications, 14(3):189–204,
2000. http://icl.cs.utk.edu/papi/.

[4] E. Karrels and E. Lusk. Performance Analysis of MPI Programs. In Proc. of

the Workshop on Environments and Tools for Parallel and Scientific Computing,
1994.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
June 1995. http://www.mpi-forum.org/.

[6] OpenMP Architecture Review Board. OpenMP Fortran Application Program
Interface – Version 2.0, November 2000. http://www.openmp.org.

23

