000037994 001__ 37994
000037994 005__ 20170601193415.0
000037994 0247_ $$2DOI$$a10.1016/S0920-3796(01)00315-5
000037994 0247_ $$2WOS$$aWOS:000172978400039
000037994 037__ $$aPreJuSER-37994
000037994 041__ $$aeng
000037994 082__ $$a620
000037994 084__ $$2WoS$$aNuclear Science & Technology
000037994 1001_ $$0P:(DE-HGF)0$$aMukherjee, S.$$b0
000037994 245__ $$aHigh-intensity non-brazed heat shield for safe steady-state operation
000037994 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2001
000037994 300__ $$a303 - 307
000037994 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000037994 3367_ $$2DataCite$$aOutput Types/Journal article
000037994 3367_ $$00$$2EndNote$$aJournal Article
000037994 3367_ $$2BibTeX$$aARTICLE
000037994 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000037994 3367_ $$2DRIVER$$aarticle
000037994 440_0 $$02169$$aFusion Engineering and Design$$v56-57$$x0920-3796
000037994 500__ $$aRecord converted from VDB: 12.11.2012
000037994 520__ $$aMany plasma-facing components in today's experiments are inertially cooled. Graphite tiles are mounted on a water-cooled steel plate using a spring and bolt mechanism. When exposed to high heat flux, such a shield can take loads only for a few seconds without becoming overheated. To operate in high intensity long pulsed/steady-state conditions, new actively cooled heat shields of brazed and non-brazed types are under development. With clamped (form-locked) monoblock tiles a prototype of non-brazed heat shield structure underwent its first high heat flux tests for divertor applications in the Julich MARION ion source [1]. The test results are encouraging, and validated a finite element model as discussed in this paper. (C) 2001 Elsevier Science B.V. All rights reserved.
000037994 536__ $$0G:(DE-Juel1)FUEK43$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung von TEXTOR-94$$c22.74.5$$x0
000037994 588__ $$aDataset connected to Web of Science
000037994 650_7 $$2WoSType$$aJ
000037994 65320 $$2Author$$aplasma-facing components
000037994 65320 $$2Author$$agraphite tiles
000037994 65320 $$2Author$$amonoblock tiles
000037994 65320 $$2Author$$afinite element
000037994 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b1
000037994 7001_ $$0P:(DE-HGF)0$$aKötterl, S.$$b2
000037994 7001_ $$0P:(DE-HGF)0$$aSchweizer, S.$$b3
000037994 7001_ $$0P:(DE-HGF)0$$aSimon-Weidner, J.$$b4
000037994 7001_ $$0P:(DE-HGF)0$$aStreibl, B.$$b5
000037994 7001_ $$0P:(DE-Juel1)130173$$aUhlemann, R.$$b6$$uFZJ
000037994 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/S0920-3796(01)00315-5$$gVol. 56-57, p. 303 - 307$$p303 - 307$$q56-57<303 - 307$$tFusion engineering and design$$v56-57$$x0920-3796$$y2001
000037994 909CO $$ooai:juser.fz-juelich.de:37994$$pVDB
000037994 9131_ $$0G:(DE-Juel1)FUEK43$$bEnergietechnik$$k22.74.5$$lKernfusion und Plasmaforschung$$vBetrieb und Weiterentwicklung von TEXTOR-94$$x0
000037994 9141_ $$y2001
000037994 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000037994 9201_ $$0I:(DE-Juel1)VDB27$$d31.12.2001$$gIPP$$kIPP-1$$lInstitutsbereich I$$x0
000037994 9201_ $$0I:(DE-Juel1)VDB28$$d31.12.2001$$gIPP$$kIPP-2$$lInstitutsbereich II$$x1
000037994 970__ $$aVDB:(DE-Juel1)4760
000037994 980__ $$aVDB
000037994 980__ $$aConvertedRecord
000037994 980__ $$ajournal
000037994 980__ $$aI:(DE-Juel1)VDB27
000037994 980__ $$aI:(DE-Juel1)VDB28
000037994 980__ $$aUNRESTRICTED
000037994 981__ $$aI:(DE-Juel1)VDB28