000038083 001__ 38083
000038083 005__ 20170601201105.0
000038083 0247_ $$2DOI$$a10.1016/S0920-3796(01)00255-1
000038083 0247_ $$2WOS$$aWOS:000172978400019
000038083 037__ $$aPreJuSER-38083
000038083 041__ $$aeng
000038083 082__ $$a620
000038083 084__ $$2WoS$$aNuclear Science & Technology
000038083 1001_ $$0P:(DE-HGF)0$$aWu, C. H.$$b0
000038083 245__ $$aProgress of the European R&D on plasma-wall interactions, neutron effects and tritium removal in ITER plasma facing materials
000038083 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2001
000038083 300__ $$a179 - 187
000038083 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000038083 3367_ $$2DataCite$$aOutput Types/Journal article
000038083 3367_ $$00$$2EndNote$$aJournal Article
000038083 3367_ $$2BibTeX$$aARTICLE
000038083 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000038083 3367_ $$2DRIVER$$aarticle
000038083 440_0 $$02169$$aFusion Engineering and Design$$v56-57$$x0920-3796
000038083 500__ $$aRecord converted from VDB: 12.11.2012
000038083 520__ $$aIn a next step D/T fusion device like ITER, an intense neutron flux will be produced as a consequence of the nuclear fusion reactions, The effects of the neutron induced damage in the microstructure of the plasma-facing material (PFM,) may significantly change the thermal properties and the mechanical properties as well as the behaviour of the swelling and the tritium retention in such materials. In addition, a peak heat flux as high as 20 MW m(-2) and a plasma flux of 10(18)-10(20) cm(-2) s(-1) are expected in the divertor zone during the normal operation of the reactor. The divertor materials have to withstand the neutron damage, the high heat fluxes and the high erosion caused by the interaction with the high flux plasma. The sputtered particles are co-deposited with plasma, which may contribute significantly to the total tritium inventory in the PFM. Furthermore, the interaction of steam with the sputtered particles (with usually high specific surfaces) could produce large amounts of hydrogen. All of the above topics represent critical issues for plasma performance, safety and economy, as they could limit the use of some PFM materials in next generation fusion devices. Therefore, substantial R&D effort is needed to elucidate the effects of the neutron induced damage on microstructure, erosion/deposition, tritium retention and dust formation, as well as on hydrogen production. In the framework of the European Fusion R&D program, an extensive effort on neutron effects of the material properties: namely, thermal conductivity, mechanical properties, dimensional stability, tritium trapping, erosion/deposition, co-deposition, dust formation/removal, chemical reactivity with steam and oxygen, outgassing, baking and tritium removal from PFM have been undertaken during the past several years. In this paper, the recent progress achieved within the European Fusion R&D program and contributions to the development of ITER PFMs are presented and critically discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
000038083 536__ $$0G:(DE-Juel1)FUEK46$$2G:(DE-HGF)$$aWandkonditionierung und Plasma-Wand-Prozesse$$c22.77.0$$x0
000038083 588__ $$aDataset connected to Web of Science
000038083 650_7 $$2WoSType$$aJ
000038083 65320 $$2Author$$aEuropean R&D
000038083 65320 $$2Author$$aplasma-wall interactions
000038083 65320 $$2Author$$aITER plasma facing materials
000038083 7001_ $$0P:(DE-HGF)0$$aAlessandrini, C.$$b1
000038083 7001_ $$0P:(DE-HGF)0$$aBonal, J. P.$$b2
000038083 7001_ $$0P:(DE-HGF)0$$aDavis, J. W.$$b3
000038083 7001_ $$0P:(DE-HGF)0$$aHaasz, A. A.$$b4
000038083 7001_ $$0P:(DE-HGF)0$$aJacob, W.$$b5
000038083 7001_ $$0P:(DE-HGF)0$$aKallenbach, A.$$b6
000038083 7001_ $$0P:(DE-HGF)0$$aKeinonen, J.$$b7
000038083 7001_ $$0P:(DE-HGF)0$$aKornejew, P.$$b8
000038083 7001_ $$0P:(DE-HGF)0$$aMoormann, R.$$b9
000038083 7001_ $$0P:(DE-Juel1)VDB2741$$aPhilipps, V.$$b10$$uFZJ
000038083 7001_ $$0P:(DE-Juel1)VDB2743$$aRoth, J.$$b11$$uFZJ
000038083 7001_ $$0P:(DE-HGF)0$$aScaffidi-Argentina, F.$$b12
000038083 7001_ $$0P:(DE-HGF)0$$aWürz, H.$$b13
000038083 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/S0920-3796(01)00255-1$$gVol. 56-57, p. 179 - 187$$p179 - 187$$q56-57<179 - 187$$tFusion engineering and design$$v56-57$$x0920-3796$$y2001
000038083 909CO $$ooai:juser.fz-juelich.de:38083$$pVDB
000038083 9131_ $$0G:(DE-Juel1)FUEK46$$bEnergietechnik$$k22.77.0$$lKernfusion und Plasmaforschung$$vWandkonditionierung und Plasma-Wand-Prozesse$$x0
000038083 9141_ $$y2001
000038083 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000038083 9201_ $$0I:(DE-Juel1)VDB27$$d31.12.2001$$gIPP$$kIPP-1$$lInstitutsbereich I$$x0
000038083 9201_ $$0I:(DE-Juel1)VDB28$$d31.12.2001$$gIPP$$kIPP-2$$lInstitutsbereich II$$x1
000038083 970__ $$aVDB:(DE-Juel1)4792
000038083 980__ $$aVDB
000038083 980__ $$aConvertedRecord
000038083 980__ $$ajournal
000038083 980__ $$aI:(DE-Juel1)VDB27
000038083 980__ $$aI:(DE-Juel1)VDB28
000038083 980__ $$aUNRESTRICTED
000038083 981__ $$aI:(DE-Juel1)VDB28