001     38111
005     20170601193933.0
024 7 _ |2 DOI
|a 10.1016/S0022-3115(00)00605-X
024 7 _ |2 WOS
|a WOS:000167676700045
037 _ _ |a PreJuSER-38111
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Nuclear Science & Technology
084 _ _ |2 WoS
|a Mining & Mineral Processing
100 1 _ |a Zhmendak, A. V.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The porous vanadium as a plasma-facing material for the fusion devices
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2001
300 _ _ |a 220 - 223
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Nuclear Materials
|x 0022-3115
|0 3620
|v 290-293
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The purpose of this work is to investigate a possibility to use porous vanadium as components for the first wall of a tokamak-reactor which can accept the halo-currents generated during a disruption in a tokamak, Samples of pure porous vanadium were tested in pulse high current discharges in lithium plasmas, A total electric charge up to 1000 C flowed through the sample in the series of the discharges, The measured erosion was about of 3 x 10(-5) g/C when the sample was used as a cathode. Samples of pure porous vanadium were also tested in TEXTOR-94. This was inserted into a carbon test limiter. The test limiter was placed in the scrape-of-layer of the main toroidal ALT-II limiter. Vanadium, deuterium and carbon were measured spectroscopically. The estimated relative flux of the vanadium atoms to deuterium atoms drops from 3.8% to 0.4% with line average electron density increase from 2.5 x 10(19) to 6 x 10(19) m(-3). (C) 2001 Elsevier Science B.V. All rights reserved.
536 _ _ |a Wandkonditionierung und Plasma-Wand-Prozesse
|c 22.77.0
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK46
|x 0
536 _ _ |a Teilchen- und Energietransport in der Plasmarandschicht
|c 22.88.5
|0 G:(DE-Juel1)FUEK48
|x 1
536 _ _ |a Verunreinigungsquellen in Tokamaks
|c 22.87.5
|0 G:(DE-Juel1)FUEK47
|x 2
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a plasma-material interaction
653 2 0 |2 Author
|a vanadium
653 2 0 |2 Author
|a lithium
653 2 0 |2 Author
|a erosion
653 2 0 |2 Author
|a limiter
653 2 0 |2 Author
|a TEXTOR
700 1 _ |a Panechkina, V. V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pavlov, S. N.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kvitcinsky, V. A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Verko, V. F.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mudretskaya, E. V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Huber, A.
|0 P:(DE-Juel1)130040
|b 6
|u FZJ
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 7
|u FZJ
700 1 _ |a Nedospasov, A. V.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sergienko, G.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/S0022-3115(00)00605-X
|g Vol. 290-293, p. 220 - 223
|p 220 - 223
|q 290-293<220 - 223
|0 PERI:(DE-600)2001279-2
|t Journal of nuclear materials
|v 290-293
|y 2001
|x 0022-3115
909 C O |o oai:juser.fz-juelich.de:38111
|p VDB
913 1 _ |k 22.77.0
|v Wandkonditionierung und Plasma-Wand-Prozesse
|l Kernfusion und Plasmaforschung
|b Energietechnik
|0 G:(DE-Juel1)FUEK46
|x 0
913 1 _ |k 22.88.5
|v Teilchen- und Energietransport in der Plasmarandschicht
|l Kernfusion und Plasmaforschung
|b Energietechnik
|0 G:(DE-Juel1)FUEK48
|x 1
913 1 _ |k 22.87.5
|v Verunreinigungsquellen in Tokamaks
|l Kernfusion und Plasmaforschung
|b Energietechnik
|0 G:(DE-Juel1)FUEK47
|x 2
914 1 _ |y 2001
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IPP-1
|l Institutsbereich I
|d 31.12.2001
|g IPP
|0 I:(DE-Juel1)VDB27
|x 0
920 1 _ |k IPP-2
|l Institutsbereich II
|d 31.12.2001
|g IPP
|0 I:(DE-Juel1)VDB28
|x 1
970 _ _ |a VDB:(DE-Juel1)4801
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)VDB27
980 _ _ |a I:(DE-Juel1)VDB28
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB28


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21