000038262 001__ 38262 000038262 005__ 20200423203802.0 000038262 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org 000038262 0247_ $$2DOI$$a10.1103/PhysRevLett.92.125502 000038262 0247_ $$2WOS$$aWOS:000220524600031 000038262 0247_ $$2Handle$$a2128/1371 000038262 0247_ $$2altmetric$$aaltmetric:3136304 000038262 037__ $$aPreJuSER-38262 000038262 041__ $$aeng 000038262 082__ $$a550 000038262 084__ $$2WoS$$aPhysics, Multidisciplinary 000038262 1001_ $$0P:(DE-HGF)0$$aZhao, X.$$b0 000038262 245__ $$aSmallest carbon nanotube is 3 A in diameter 000038262 260__ $$aCollege Park, Md.$$bAPS$$c2004 000038262 300__ $$a125502 000038262 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000038262 3367_ $$2DataCite$$aOutput Types/Journal article 000038262 3367_ $$00$$2EndNote$$aJournal Article 000038262 3367_ $$2BibTeX$$aARTICLE 000038262 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000038262 3367_ $$2DRIVER$$aarticle 000038262 440_0 $$04925$$aPhysical Review Letters$$v92$$x0031-9007 000038262 500__ $$aRecord converted from VDB: 12.11.2012 000038262 520__ $$aPrevious energetic considerations have led to the belief that carbon nanotubes (CNTs) of 4 Angstrom in diameter are the smallest stable CNTs. Using high-resolution transmission electron microscopy, we find that a stable 3 Angstrom CNT can be grown inside a multiwalled carbon nanotube. Density functional calculations indicate that the 3 Angstrom CNT is the armchair CNT(2,2) with a radial breathing mode at 787 cm(-1). Each end can be capped by half of a C-12 cage (hexagonal prism) containing tetragons. 000038262 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000038262 588__ $$aDataset connected to Web of Science 000038262 650_7 $$2WoSType$$aJ 000038262 7001_ $$0P:(DE-Juel1)VDB26716$$aLiu, Y.$$b1$$uFZJ 000038262 7001_ $$0P:(DE-HGF)0$$aInoue, S.$$b2 000038262 7001_ $$0P:(DE-HGF)0$$aSuzuki, T.$$b3 000038262 7001_ $$0P:(DE-Juel1)VDB2298$$aJones, G. J.$$b4$$uFZJ 000038262 7001_ $$0P:(DE-HGF)0$$aAndo, Y.$$b5 000038262 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.92.125502$$gVol. 92, p. 125502$$p125502$$q92<125502$$tPhysical review letters$$v92$$x0031-9007$$y2004 000038262 8564_ $$uhttps://juser.fz-juelich.de/record/38262/files/48588.pdf$$yOpenAccess 000038262 8564_ $$uhttps://juser.fz-juelich.de/record/38262/files/48588.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000038262 8564_ $$uhttps://juser.fz-juelich.de/record/38262/files/48588.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000038262 8564_ $$uhttps://juser.fz-juelich.de/record/38262/files/48588.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000038262 909CO $$ooai:juser.fz-juelich.de:38262$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000038262 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000038262 9141_ $$y2004 000038262 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000038262 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000038262 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0 000038262 970__ $$aVDB:(DE-Juel1)48588 000038262 980__ $$aVDB 000038262 980__ $$aJUWEL 000038262 980__ $$aConvertedRecord 000038262 980__ $$ajournal 000038262 980__ $$aI:(DE-Juel1)PGI-1-20110106 000038262 980__ $$aUNRESTRICTED 000038262 980__ $$aFullTexts 000038262 9801_ $$aFullTexts 000038262 981__ $$aI:(DE-Juel1)PGI-1-20110106