000003827 001__ 3827 000003827 005__ 20200402205552.0 000003827 0247_ $$2DOI$$a10.1016/j.susc.2005.07.040 000003827 0247_ $$2WOS$$aWOS:000233315900016 000003827 037__ $$aPreJuSER-3827 000003827 041__ $$aeng 000003827 082__ $$a540 000003827 084__ $$2WoS$$aChemistry, Physical 000003827 084__ $$2WoS$$aPhysics, Condensed Matter 000003827 1001_ $$0P:(DE-Juel1)4744$$aGiesen, M.$$b0$$uFZJ 000003827 245__ $$aThe thermodynamics of electrochemical annealing 000003827 260__ $$aAmsterdam$$bElsevier$$c2005 000003827 300__ $$a 000003827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000003827 3367_ $$2DataCite$$aOutput Types/Journal article 000003827 3367_ $$00$$2EndNote$$aJournal Article 000003827 3367_ $$2BibTeX$$aARTICLE 000003827 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000003827 3367_ $$2DRIVER$$aarticle 000003827 440_0 $$05673$$aSurface Science$$v595$$x0039-6028$$y1 000003827 500__ $$aRecord converted from VDB: 12.11.2012 000003827 520__ $$aWe show that on solid electrodes held at constant potential in an electrolyte all defect formation energies and activation energies for surface transport become potential dependent. The rapid smoothening of rough metal electrodes for (mostly) positive electrode potentials ("electrochemical annealing") is therefore the consequence of the specific thermodynamic boundary condition of constant electrode potential. The potential dependence can be related to the surface charge density and the dipole moments of the defects. With dipole moments calculated by ab initio methods the theory is applied to experimental data on two-dimensional Ostwald ripening on Au(1 00) electrodes. The theory is further discussed in the context of other experiments. (c) 2005 Elsevier B.V. All rights reserved. 000003827 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000003827 588__ $$aDataset connected to Web of Science 000003827 650_7 $$2WoSType$$aJ 000003827 65320 $$2Author$$aab initio quantum chemical methods and calculations 000003827 65320 $$2Author$$amodels of surface kinetics 000003827 65320 $$2Author$$athermodynamics 000003827 65320 $$2Author$$aelectrochemical methods 000003827 65320 $$2Author$$ascanning tunneling microscopy 000003827 65320 $$2Author$$asurface diffusion 000003827 65320 $$2Author$$agold 000003827 7001_ $$0P:(DE-Juel1)128800$$aBeltramo, G. L.$$b1$$uFZJ 000003827 7001_ $$0P:(DE-Juel1)VDB5493$$aDieluweit, S.$$b2$$uFZJ 000003827 7001_ $$0P:(DE-Juel1)VDB2892$$aMüller, J.$$b3$$uFZJ 000003827 7001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b4$$uFZJ 000003827 7001_ $$0P:(DE-Juel1)VDB23518$$aSantos, E.$$b5$$uFZJ 000003827 7001_ $$0P:(DE-Juel1)VDB18778$$aSchmickler, W.$$b6$$uFZJ 000003827 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2005.07.040$$gVol. 595$$q595$$tSurface science$$v595$$x0039-6028$$y2005 000003827 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2005.07.040 000003827 909CO $$ooai:juser.fz-juelich.de:3827$$pVDB 000003827 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000003827 9141_ $$aNachtrag$$y2005 000003827 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000003827 9201_ $$0I:(DE-Juel1)VDB802$$d31.12.2010$$gIBN$$kIBN-4$$lBiomechanik$$x0 000003827 970__ $$aVDB:(DE-Juel1)110262 000003827 980__ $$aVDB 000003827 980__ $$aConvertedRecord 000003827 980__ $$ajournal 000003827 980__ $$aI:(DE-Juel1)ICS-7-20110106 000003827 980__ $$aUNRESTRICTED 000003827 981__ $$aI:(DE-Juel1)IBI-2-20200312 000003827 981__ $$aI:(DE-Juel1)ICS-7-20110106