000003827 001__ 3827
000003827 005__ 20200402205552.0
000003827 0247_ $$2DOI$$a10.1016/j.susc.2005.07.040
000003827 0247_ $$2WOS$$aWOS:000233315900016
000003827 037__ $$aPreJuSER-3827
000003827 041__ $$aeng
000003827 082__ $$a540
000003827 084__ $$2WoS$$aChemistry, Physical
000003827 084__ $$2WoS$$aPhysics, Condensed Matter
000003827 1001_ $$0P:(DE-Juel1)4744$$aGiesen, M.$$b0$$uFZJ
000003827 245__ $$aThe thermodynamics of electrochemical annealing
000003827 260__ $$aAmsterdam$$bElsevier$$c2005
000003827 300__ $$a
000003827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000003827 3367_ $$2DataCite$$aOutput Types/Journal article
000003827 3367_ $$00$$2EndNote$$aJournal Article
000003827 3367_ $$2BibTeX$$aARTICLE
000003827 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000003827 3367_ $$2DRIVER$$aarticle
000003827 440_0 $$05673$$aSurface Science$$v595$$x0039-6028$$y1
000003827 500__ $$aRecord converted from VDB: 12.11.2012
000003827 520__ $$aWe show that on solid electrodes held at constant potential in an electrolyte all defect formation energies and activation energies for surface transport become potential dependent. The rapid smoothening of rough metal electrodes for (mostly) positive electrode potentials ("electrochemical annealing") is therefore the consequence of the specific thermodynamic boundary condition of constant electrode potential. The potential dependence can be related to the surface charge density and the dipole moments of the defects. With dipole moments calculated by ab initio methods the theory is applied to experimental data on two-dimensional Ostwald ripening on Au(1 00) electrodes. The theory is further discussed in the context of other experiments. (c) 2005 Elsevier B.V. All rights reserved.
000003827 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000003827 588__ $$aDataset connected to Web of Science
000003827 650_7 $$2WoSType$$aJ
000003827 65320 $$2Author$$aab initio quantum chemical methods and calculations
000003827 65320 $$2Author$$amodels of surface kinetics
000003827 65320 $$2Author$$athermodynamics
000003827 65320 $$2Author$$aelectrochemical methods
000003827 65320 $$2Author$$ascanning tunneling microscopy
000003827 65320 $$2Author$$asurface diffusion
000003827 65320 $$2Author$$agold
000003827 7001_ $$0P:(DE-Juel1)128800$$aBeltramo, G. L.$$b1$$uFZJ
000003827 7001_ $$0P:(DE-Juel1)VDB5493$$aDieluweit, S.$$b2$$uFZJ
000003827 7001_ $$0P:(DE-Juel1)VDB2892$$aMüller, J.$$b3$$uFZJ
000003827 7001_ $$0P:(DE-Juel1)VDB5414$$aIbach, H.$$b4$$uFZJ
000003827 7001_ $$0P:(DE-Juel1)VDB23518$$aSantos, E.$$b5$$uFZJ
000003827 7001_ $$0P:(DE-Juel1)VDB18778$$aSchmickler, W.$$b6$$uFZJ
000003827 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2005.07.040$$gVol. 595$$q595$$tSurface science$$v595$$x0039-6028$$y2005
000003827 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2005.07.040
000003827 909CO $$ooai:juser.fz-juelich.de:3827$$pVDB
000003827 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000003827 9141_ $$aNachtrag$$y2005
000003827 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000003827 9201_ $$0I:(DE-Juel1)VDB802$$d31.12.2010$$gIBN$$kIBN-4$$lBiomechanik$$x0
000003827 970__ $$aVDB:(DE-Juel1)110262
000003827 980__ $$aVDB
000003827 980__ $$aConvertedRecord
000003827 980__ $$ajournal
000003827 980__ $$aI:(DE-Juel1)ICS-7-20110106
000003827 980__ $$aUNRESTRICTED
000003827 981__ $$aI:(DE-Juel1)IBI-2-20200312
000003827 981__ $$aI:(DE-Juel1)ICS-7-20110106