000038319 001__ 38319
000038319 005__ 20180210123904.0
000038319 0247_ $$2DOI$$a10.1016/j.jcis.2003.07.043
000038319 0247_ $$2WOS$$aWOS:000187574400018
000038319 037__ $$aPreJuSER-38319
000038319 041__ $$aeng
000038319 082__ $$a540
000038319 084__ $$2WoS$$aChemistry, Physical
000038319 1001_ $$0P:(DE-Juel1)VDB1270$$aPohlmeier, A.$$b0$$uFZJ
000038319 245__ $$aReaction rates of heavy metal ions at geoethite:  relaxation experiments and modeling
000038319 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2004
000038319 300__ $$a131 - 142
000038319 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000038319 3367_ $$2DataCite$$aOutput Types/Journal article
000038319 3367_ $$00$$2EndNote$$aJournal Article
000038319 3367_ $$2BibTeX$$aARTICLE
000038319 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000038319 3367_ $$2DRIVER$$aarticle
000038319 440_0 $$03193$$aJournal of Colloid and Interface Science$$v269$$x0021-9797
000038319 500__ $$aRecord converted from VDB: 12.11.2012
000038319 520__ $$aIn the present paper we extend our theory that calculates the fastest reaction step observable in suspensions containing charged micro-crystals and heavy metal cations. The calculation requires the solution of the nonlinear Poisson-Boltzmann equation for nonsymmetric electrolytes plus the Nernst-Planck equation for transport of ions in electric fields. We find that the diffusional transport of ions to and from the surface is the rate-limiting process for our experimentally observed maximum rates. At low pH and low metal ion concentration the diffusion of metal ions is the rate-limiting step, whereas for high pH and high metal ion concentration the diffusion of the solvated protons controls the overall relaxation rate. The validity of this theory is checked for the reactions of Pb2+ and Cd2+ with goethite by means of pressure jump relaxation experiments over a wide range of temperature and pH. In all cases we observe fast processes (relaxation in the range of 10(3) s(-1)) in quantitative agreement with the theory, followed by slower processes, most probably caused by diffusion into the interior of the porous microcrystals. (C) 2003 Elsevier Inc. All rights reserved.
000038319 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000038319 588__ $$aDataset connected to Web of Science
000038319 650_7 $$2WoSType$$aJ
000038319 65320 $$2Author$$amodel
000038319 65320 $$2Author$$akinetics
000038319 65320 $$2Author$$adiffusion
000038319 65320 $$2Author$$apressure jump relaxation
000038319 65320 $$2Author$$agoethite
000038319 65320 $$2Author$$aPb2+
000038319 65320 $$2Author$$aCd2+
000038319 7001_ $$0P:(DE-Juel1)130810$$aLustfeld, H.$$b1$$uFZJ
000038319 773__ $$0PERI:(DE-600)1469021-4$$a10.1016/j.jcis.2003.07.043$$gVol. 269, p. 131 - 142$$p131 - 142$$q269<131 - 142$$tJournal of colloid and interface science$$v269$$x0021-9797$$y2004
000038319 8567_ $$uhttp://dx.doi.org/10.1016/j.jcis.2003.07.043
000038319 909CO $$ooai:juser.fz-juelich.de:38319$$pVDB
000038319 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000038319 9141_ $$y2004
000038319 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000038319 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000038319 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x1
000038319 970__ $$aVDB:(DE-Juel1)48806
000038319 980__ $$aVDB
000038319 980__ $$aConvertedRecord
000038319 980__ $$ajournal
000038319 980__ $$aI:(DE-Juel1)PGI-1-20110106
000038319 980__ $$aI:(DE-Juel1)IBG-3-20101118
000038319 980__ $$aUNRESTRICTED
000038319 981__ $$aI:(DE-Juel1)PGI-1-20110106
000038319 981__ $$aI:(DE-Juel1)IBG-3-20101118