001     38319
005     20180210123904.0
024 7 _ |2 DOI
|a 10.1016/j.jcis.2003.07.043
024 7 _ |2 WOS
|a WOS:000187574400018
037 _ _ |a PreJuSER-38319
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
100 1 _ |a Pohlmeier, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB1270
245 _ _ |a Reaction rates of heavy metal ions at geoethite: relaxation experiments and modeling
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2004
300 _ _ |a 131 - 142
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Colloid and Interface Science
|x 0021-9797
|0 3193
|v 269
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In the present paper we extend our theory that calculates the fastest reaction step observable in suspensions containing charged micro-crystals and heavy metal cations. The calculation requires the solution of the nonlinear Poisson-Boltzmann equation for nonsymmetric electrolytes plus the Nernst-Planck equation for transport of ions in electric fields. We find that the diffusional transport of ions to and from the surface is the rate-limiting process for our experimentally observed maximum rates. At low pH and low metal ion concentration the diffusion of metal ions is the rate-limiting step, whereas for high pH and high metal ion concentration the diffusion of the solvated protons controls the overall relaxation rate. The validity of this theory is checked for the reactions of Pb2+ and Cd2+ with goethite by means of pressure jump relaxation experiments over a wide range of temperature and pH. In all cases we observe fast processes (relaxation in the range of 10(3) s(-1)) in quantitative agreement with the theory, followed by slower processes, most probably caused by diffusion into the interior of the porous microcrystals. (C) 2003 Elsevier Inc. All rights reserved.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a model
653 2 0 |2 Author
|a kinetics
653 2 0 |2 Author
|a diffusion
653 2 0 |2 Author
|a pressure jump relaxation
653 2 0 |2 Author
|a goethite
653 2 0 |2 Author
|a Pb2+
653 2 0 |2 Author
|a Cd2+
700 1 _ |a Lustfeld, H.
|b 1
|u FZJ
|0 P:(DE-Juel1)130810
773 _ _ |a 10.1016/j.jcis.2003.07.043
|g Vol. 269, p. 131 - 142
|p 131 - 142
|q 269<131 - 142
|0 PERI:(DE-600)1469021-4
|t Journal of colloid and interface science
|v 269
|y 2004
|x 0021-9797
856 7 _ |u http://dx.doi.org/10.1016/j.jcis.2003.07.043
909 C O |o oai:juser.fz-juelich.de:38319
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-TH-I
|l Theorie I
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB30
|x 0
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 1
970 _ _ |a VDB:(DE-Juel1)48806
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21