000038457 001__ 38457 000038457 005__ 20240610115657.0 000038457 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org 000038457 0247_ $$2DOI$$a10.1103/PhysRevLett.93.258102 000038457 0247_ $$2WOS$$aWOS:000225785200075 000038457 0247_ $$2Handle$$a2128/1498 000038457 037__ $$aPreJuSER-38457 000038457 041__ $$aeng 000038457 082__ $$a550 000038457 084__ $$2WoS$$aPhysics, Multidisciplinary 000038457 1001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b0$$uFZJ 000038457 245__ $$aFluid Vesicles with Viscous Membranes in Shear Flow 000038457 260__ $$aCollege Park, Md.$$bAPS$$c2004 000038457 300__ $$a258102 000038457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000038457 3367_ $$2DataCite$$aOutput Types/Journal article 000038457 3367_ $$00$$2EndNote$$aJournal Article 000038457 3367_ $$2BibTeX$$aARTICLE 000038457 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000038457 3367_ $$2DRIVER$$aarticle 000038457 440_0 $$04925$$aPhysical Review Letters$$v93$$x0031-9007 000038457 500__ $$aRecord converted from VDB: 12.11.2012 000038457 520__ $$aThe effect of membrane viscosity on the dynamics of vesicles in shear flow is studied. We present a new simulation technique, which combines three-dimensional multiparticle collision dynamics for the solvent with a dynamically triangulated membrane model. Vesicles are found to transit from steady tank treading to unsteady tumbling motion with increasing membrane viscosity. Depending on the reduced volume and membrane viscosity, shear can induce both discocyte-to-prolate and prolate-to-discocyte transformations. This behavior can be understood from a simplified model. 000038457 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000038457 588__ $$aDataset connected to Web of Science 000038457 650_7 $$2WoSType$$aJ 000038457 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ 000038457 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.93.258102$$gVol. 93, p. 258102$$p258102$$q93<258102$$tPhysical review letters$$v93$$x0031-9007$$y2004 000038457 8567_ $$uhttp://hdl.handle.net/2128/1498$$uhttp://dx.doi.org/10.1103/PhysRevLett.93.258102 000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.pdf$$yOpenAccess 000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000038457 909CO $$ooai:juser.fz-juelich.de:38457$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000038457 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000038457 9141_ $$y2004 000038457 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000038457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000038457 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0 000038457 970__ $$aVDB:(DE-Juel1)49233 000038457 9801_ $$aFullTexts 000038457 980__ $$aVDB 000038457 980__ $$aJUWEL 000038457 980__ $$aConvertedRecord 000038457 980__ $$ajournal 000038457 980__ $$aI:(DE-Juel1)ICS-2-20110106 000038457 980__ $$aUNRESTRICTED 000038457 980__ $$aFullTexts 000038457 981__ $$aI:(DE-Juel1)IBI-5-20200312 000038457 981__ $$aI:(DE-Juel1)IAS-2-20090406 000038457 981__ $$aI:(DE-Juel1)ICS-2-20110106