000038457 001__ 38457
000038457 005__ 20240610115657.0
000038457 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org
000038457 0247_ $$2DOI$$a10.1103/PhysRevLett.93.258102
000038457 0247_ $$2WOS$$aWOS:000225785200075
000038457 0247_ $$2Handle$$a2128/1498
000038457 037__ $$aPreJuSER-38457
000038457 041__ $$aeng
000038457 082__ $$a550
000038457 084__ $$2WoS$$aPhysics, Multidisciplinary
000038457 1001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b0$$uFZJ
000038457 245__ $$aFluid Vesicles with Viscous Membranes in Shear Flow
000038457 260__ $$aCollege Park, Md.$$bAPS$$c2004
000038457 300__ $$a258102
000038457 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000038457 3367_ $$2DataCite$$aOutput Types/Journal article
000038457 3367_ $$00$$2EndNote$$aJournal Article
000038457 3367_ $$2BibTeX$$aARTICLE
000038457 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000038457 3367_ $$2DRIVER$$aarticle
000038457 440_0 $$04925$$aPhysical Review Letters$$v93$$x0031-9007
000038457 500__ $$aRecord converted from VDB: 12.11.2012
000038457 520__ $$aThe effect of membrane viscosity on the dynamics of vesicles in shear flow is studied. We present a new simulation technique, which combines three-dimensional multiparticle collision dynamics for the solvent with a dynamically triangulated membrane model. Vesicles are found to transit from steady tank treading to unsteady tumbling motion with increasing membrane viscosity. Depending on the reduced volume and membrane viscosity, shear can induce both discocyte-to-prolate and prolate-to-discocyte transformations. This behavior can be understood from a simplified model.
000038457 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000038457 588__ $$aDataset connected to Web of Science
000038457 650_7 $$2WoSType$$aJ
000038457 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ
000038457 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.93.258102$$gVol. 93, p. 258102$$p258102$$q93<258102$$tPhysical review letters$$v93$$x0031-9007$$y2004
000038457 8567_ $$uhttp://hdl.handle.net/2128/1498$$uhttp://dx.doi.org/10.1103/PhysRevLett.93.258102
000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.pdf$$yOpenAccess
000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000038457 8564_ $$uhttps://juser.fz-juelich.de/record/38457/files/49233.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000038457 909CO $$ooai:juser.fz-juelich.de:38457$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000038457 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000038457 9141_ $$y2004
000038457 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000038457 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000038457 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0
000038457 970__ $$aVDB:(DE-Juel1)49233
000038457 9801_ $$aFullTexts
000038457 980__ $$aVDB
000038457 980__ $$aJUWEL
000038457 980__ $$aConvertedRecord
000038457 980__ $$ajournal
000038457 980__ $$aI:(DE-Juel1)ICS-2-20110106
000038457 980__ $$aUNRESTRICTED
000038457 980__ $$aFullTexts
000038457 981__ $$aI:(DE-Juel1)IBI-5-20200312
000038457 981__ $$aI:(DE-Juel1)IAS-2-20090406
000038457 981__ $$aI:(DE-Juel1)ICS-2-20110106