000038515 001__ 38515
000038515 005__ 20230426083050.0
000038515 017__ $$aThis version is available at the following Publisher URL: http://prb.aps.org
000038515 0247_ $$2DOI$$a10.1103/PhysRevB.69.245411
000038515 0247_ $$2WOS$$aWOS:000222531800083
000038515 0247_ $$2Handle$$a2128/1375
000038515 037__ $$aPreJuSER-38515
000038515 041__ $$aeng
000038515 082__ $$a530
000038515 084__ $$2WoS$$aPhysics, Condensed Matter
000038515 1001_ $$0P:(DE-Juel1)VDB37736$$ada Silva, J. L.$$b0$$uFZJ
000038515 245__ $$aFirst-principles investigation of the multilayer relaxation of stepped Cu surfaces
000038515 260__ $$aCollege Park, Md.$$bAPS$$c2004
000038515 300__ $$a245411
000038515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000038515 3367_ $$2DataCite$$aOutput Types/Journal article
000038515 3367_ $$00$$2EndNote$$aJournal Article
000038515 3367_ $$2BibTeX$$aARTICLE
000038515 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000038515 3367_ $$2DRIVER$$aarticle
000038515 440_0 $$04919$$aPhysical Review B$$v69$$x1098-0121
000038515 500__ $$aRecord converted from VDB: 12.11.2012
000038515 520__ $$aWe performed density-functional theory calculations, employing the all-electron full-potential linearized augmented plane-wave (FLAPW) method, for the multilayer relaxations of the vicinal, high-Miller-index Cu(210), Cu(211), and Cu(331) surfaces, as well as for the flat, low-Miller-index Cu(100), Cu(110), and Cu(111) surfaces. Generally, it is expected that the interlayer relaxation-sequence at stepped metal surfaces with n surface atom rows in the terraces exposed to the vacuum show n-1 contractions (indicated by -) followed by one expansion (indicated by +). However, recent studies based on low-energy electron diffraction (LEED) intensity analysis and all-electron FLAPW calculations suggested that the multilayer relaxation-sequence of the stepped Cu(331) surface, for which n=3, behaves anomalously, i.e., -++., instead of the expected --+.. From the results presented in this work, we did not find any indication of such anomalous behavior for Cu(331) or for any of the investigated stepped Cu surfaces. For the flat surfaces we obtained the expected contraction of the topmost interlayer distance. In the particular case of the Cu(110) surface, a pronounced alternating oscillatory behavior extending over six interlayer distances was found, i.e., -+-+-+. For all studied Cu surfaces in the present work, we found a good quantitative agreement between our interlayer relaxations and those obtained by LEED intensity analysis.
000038515 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000038515 542__ $$2Crossref$$i2004-06-25$$uhttp://link.aps.org/licenses/aps-default-license
000038515 588__ $$aDataset connected to Web of Science
000038515 650_7 $$2WoSType$$aJ
000038515 7001_ $$0P:(DE-Juel1)VDB3933$$aSchroeder, K.$$b1$$uFZJ
000038515 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b2$$uFZJ
000038515 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.69.245411$$bAmerican Physical Society (APS)$$d2004-06-25$$n24$$p245411$$tPhysical Review B$$v69$$x1098-0121$$y2004
000038515 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.69.245411$$gVol. 69, p. 245411$$n24$$p245411$$q69<245411$$tPhysical review / B$$v69$$x1098-0121$$y2004
000038515 8567_ $$uhttp://hdl.handle.net/2128/1375$$uhttp://dx.doi.org/10.1103/PhysRevB.69.245411
000038515 8564_ $$uhttps://juser.fz-juelich.de/record/38515/files/49567.pdf$$yOpenAccess
000038515 8564_ $$uhttps://juser.fz-juelich.de/record/38515/files/49567.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000038515 8564_ $$uhttps://juser.fz-juelich.de/record/38515/files/49567.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000038515 8564_ $$uhttps://juser.fz-juelich.de/record/38515/files/49567.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000038515 909CO $$ooai:juser.fz-juelich.de:38515$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000038515 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000038515 9141_ $$y2004
000038515 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000038515 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000038515 9201_ $$0I:(DE-Juel1)VDB32$$d31.12.2006$$gIFF$$kIFF-TH-III$$lTheorie III$$x0
000038515 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x1
000038515 970__ $$aVDB:(DE-Juel1)49567
000038515 980__ $$aVDB
000038515 980__ $$aJUWEL
000038515 980__ $$aConvertedRecord
000038515 980__ $$ajournal
000038515 980__ $$aI:(DE-Juel1)PGI-2-20110106
000038515 980__ $$aI:(DE-Juel1)PGI-1-20110106
000038515 980__ $$aUNRESTRICTED
000038515 980__ $$aFullTexts
000038515 9801_ $$aFullTexts
000038515 981__ $$aI:(DE-Juel1)PGI-2-20110106
000038515 981__ $$aI:(DE-Juel1)PGI-1-20110106
000038515 999C5 $$1M.-C. Desjonquères$$2Crossref$$oM.-C. Desjonquères Concepts in Surface Science 1995$$tConcepts in Surface Science$$y1995
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(01)01565-5
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.4111
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(79)90063-3
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(80)90547-6
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/14/22/023
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.49.669
000038515 999C5 $$1J. R. Noonan$$2Crossref$$oJ. R. Noonan 1982$$y1982
000038515 999C5 $$1D. L. Adams$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(83)80033-8$$p294 -$$tSurf. Sci.$$v128$$y1983
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(83)90717-3
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.29.576
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.35.9037
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.33.7983
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.8288
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.2532
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(93)90556-Y
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(94)00005-0
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.2607
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.4726
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.245414
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(89)90586-4
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.8927
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.13894
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(98)00476-2
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.10062
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218625X99000585
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0218625X99000858
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.581864
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.15446
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.12844
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.4904
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.115401
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(02)01100-7
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.205406
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.115420
000038515 999C5 $$1M. W. Finnis$$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/4/3/002$$pL37 -$$tJ. Phys. F: Met. Phys.$$v4$$y1974
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.60.661
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.136.B864
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000038515 999C5 $$1D. J. Singh$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-2312-0$$y1994
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.1706
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.6388
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188
000038515 999C5 $$1M. G. Gillan$$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/1/4/005$$p689 -$$tJ. Phys.: Condens. Matter$$v1$$y1989
000038515 999C5 $$1F. D. Murnaghan$$2Crossref$$oF. D. Murnaghan 1944$$y1944
000038515 999C5 $$1C. Kittel$$2Crossref$$oC. Kittel Introduction to Solid State Physics 1996$$tIntroduction to Solid State Physics$$y1996
000038515 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.4105