001     3965
005     20200423202457.0
024 7 _ |2 pmid
|a pmid:19392708
024 7 _ |2 DOI
|a 10.1111/j.1365-313X.2009.03888.x
024 7 _ |2 WOS
|a WOS:000268961600011
024 7 _ |a altmetric:5085562
|2 altmetric
037 _ _ |a PreJuSER-3965
041 _ _ |a eng
082 _ _ |a 580
084 _ _ |2 WoS
|a Plant Sciences
100 1 _ |a Jahnke, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)129336
245 _ _ |a Combined MRI-PET dissects dynamic changes in plant structures and functions
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2009
300 _ _ |a 634 - 644
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a The Plant Journal
|x 0960-7412
|0 21082
|v 59
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope (11)C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Beta vulgaris
650 _ 2 |2 MeSH
|a Carbon Radioisotopes
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Plant Roots: anatomy & histology
650 _ 2 |2 MeSH
|a Plant Roots: metabolism
650 _ 2 |2 MeSH
|a Plant Shoots: anatomy & histology
650 _ 2 |2 MeSH
|a Plant Shoots: metabolism
650 _ 2 |2 MeSH
|a Positron-Emission Tomography: methods
650 _ 2 |2 MeSH
|a Raphanus
650 _ 2 |2 MeSH
|a Zea mays
650 _ 7 |0 0
|2 NLM Chemicals
|a Carbon Radioisotopes
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a carbon-11 (C-11)
653 2 0 |2 Author
|a co-registration
653 2 0 |2 Author
|a functional imaging (3D)
653 2 0 |2 Author
|a magnetic resonance imaging (MRI)
653 2 0 |2 Author
|a non-invasive method
653 2 0 |2 Author
|a positron emission tomography (PET)
700 1 _ |a Menzel, M. I.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB63505
700 1 _ |a van Dusschoten, D.
|b 2
|u FZJ
|0 P:(DE-Juel1)129425
700 1 _ |a Roeb, G. W.
|b 3
|u FZJ
|0 P:(DE-Juel1)129390
700 1 _ |a Bühler, J.
|b 4
|u FZJ
|0 P:(DE-Juel1)5963
700 1 _ |a Minwuyelet, S.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB70195
700 1 _ |a Blümler, P.
|b 6
|u FZJ
|0 P:(DE-Juel1)VDB49819
700 1 _ |a Temperton, V. M.
|b 7
|u FZJ
|0 P:(DE-Juel1)129409
700 1 _ |a Hombach, T.
|b 8
|u FZJ
|0 P:(DE-Juel1)129332
700 1 _ |a Streun, M.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Beer, S.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Khodaverdi, M.
|b 11
|0 P:(DE-HGF)0
700 1 _ |a Ziemons, K.
|b 12
|u FZJ
|0 P:(DE-Juel1)VDB1841
700 1 _ |a Coenen, H. H.
|b 13
|u FZJ
|0 P:(DE-Juel1)131816
700 1 _ |a Schurr, U.
|b 14
|u FZJ
|0 P:(DE-Juel1)129402
773 _ _ |a 10.1111/j.1365-313X.2009.03888.x
|g Vol. 59, p. 634 - 644
|p 634 - 644
|q 59<634 - 644
|0 PERI:(DE-600)2020961-7
|t The @plant journal
|v 59
|y 2009
|x 0960-7412
856 7 _ |u http://dx.doi.org/10.1111/j.1365-313X.2009.03888.x
856 4 _ |u https://juser.fz-juelich.de/record/3965/files/FZJ-3965.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:3965
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-3
|l Phytosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)ICG-3-20090406
|x 1
920 1 _ |k INM-5
|l Nuklearchemie
|g INM
|0 I:(DE-Juel1)INM-5-20090406
|x 2
970 _ _ |a VDB:(DE-Juel1)110538
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)INM-5-20090406
981 _ _ |a I:(DE-Juel1)ICG-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21