001     39771
005     20180210141238.0
024 7 _ |2 DOI
|a 10.1016/S0304-8853(00)01392-5
024 7 _ |2 WOS
|a WOS:000168970100014
037 _ _ |a PreJuSER-39771
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Dahmen, K.
|0 P:(DE-Juel1)VDB5680
|b 0
|u FZJ
245 _ _ |a A finite element analysis of the bending of crystalline plates due to anisotropic surface and film stress applied to magnetoelasticity
260 _ _ |a Amsterdam
|b North-Holland Publ. Co.
|c 2001
300 _ _ |a 74
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Magnetism and Magnetic Materials
|x 0304-8853
|0 3490
|v 231
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The bending of crystalline plates in response to a non-isotropic stress on one of the two surfaces is investigated with special attention to magnetoelastic effects. The crystalline plates are assumed to have cubic symmetry, expose either (1 0 0) or (1 I I) surfaces, and be clamped along one edge. It is shown that the effect of clamping can be described by a dimensionless parameter, the "dimensionality" D, which in general depends on the length-to-width ratio of the sample, the Poisson ratio v, and the elastic anisotropy A. Using a finite element analysis we find that the dimensionality parameters for anisotropic and isotropic surface stresses are identical. The theory is applied to the bending caused by magnetoelastic stresses in deposited thin films. Expressions are derived to calculate the magnetoelastic coupling constants of films with cubic, tetragonal, or hexagonal symmetry from a measurement of the change of radius of curvature of the film-substrate composite upon an in-plane reorientation of the film magnetization. (C) 2001 Elsevier Science B.V. All rights reserved.
536 _ _ |a Struktur und Dynamik von Grenzflächen
|c 29.25.0
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK60
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a surface stress
653 2 0 |2 Author
|a magnetoelastic coupling
700 1 _ |a Ibach, H.
|0 P:(DE-Juel1)VDB5414
|b 1
|u FZJ
700 1 _ |a Sander, D.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/S0304-8853(00)01392-5
|g Vol. 231, p. 74
|p 74
|q 231<74
|0 PERI:(DE-600)1479000-2
|t Journal of magnetism and magnetic materials
|v 231
|y 2001
|x 0304-8853
909 C O |o oai:juser.fz-juelich.de:39771
|p VDB
913 1 _ |k 29.25.0
|v Struktur und Dynamik von Grenzflächen
|l Grenzflächen- und Vakuumforschung
|b Struktur der Materie und Materialforschung
|0 G:(DE-Juel1)FUEK60
|x 0
914 1 _ |y 2001
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB43
|x 0
970 _ _ |a VDB:(DE-Juel1)5275
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21