000000400 001__ 400
000000400 005__ 20200402205339.0
000000400 0247_ $$2pmid$$apmid:18463289
000000400 0247_ $$2pmc$$apmc:PMC2383988
000000400 0247_ $$2DOI$$a10.1073/pnas.0801706105
000000400 0247_ $$2WOS$$aWOS:000255921200023
000000400 037__ $$aPreJuSER-400
000000400 041__ $$aeng
000000400 082__ $$a000
000000400 084__ $$2WoS$$aMultidisciplinary Sciences
000000400 1001_ $$0P:(DE-HGF)0$$aSmith, A.$$b0
000000400 245__ $$aForce-induced growth of adhesion domains is controlled by receptor mobility
000000400 260__ $$aWashington, DC$$bAcademy$$c2008
000000400 300__ $$a6906 - 6911
000000400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000400 3367_ $$2DataCite$$aOutput Types/Journal article
000000400 3367_ $$00$$2EndNote$$aJournal Article
000000400 3367_ $$2BibTeX$$aARTICLE
000000400 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000400 3367_ $$2DRIVER$$aarticle
000000400 440_0 $$05100$$aProceedings of the National Academy of Sciences of the United States of America$$v105$$x0027-8424
000000400 500__ $$aRecord converted from VDB: 12.11.2012
000000400 520__ $$aIn living cells, adhesion structures have the astonishing ability to grow and strengthen under force. Despite the rising evidence of the importance of this phenomenon, little is known about the underlying mechanism. Here, we show that force-induced adhesion-strengthening can occur purely because of the thermodynamic response to the elastic deformation of the membrane, even in the absence of the actively regulated cytoskeleton of the cell, which was hitherto deemed necessary. We impose pN-forces on two fluid membranes, locally pre-adhered by RGD-integrin binding. One of the binding partners is always mobile whereas the mobility of the other can be switched on or off. Immediate passive strengthening of adhesion structures occurs in both cases. When both binding partners are mobile, strengthening is aided by lateral movement of intact bonds as a transient response to force-induced membrane-deformation. By extending our microinterferometric technique to the suboptical regime, we show that the adhesion, as well as the resistance to force-induced de-adhesion, is greatly enhanced when both, rather than only one, of the binding partners are mobile. We formulate a theory that explains our observations by linking the macroscopic shape deformation with the microscopic formation of bonds, which further elucidates the importance of receptor mobility. We propose this fast passive response to be the first-recognition that triggers signaling events leading to mechanosensing in living cells.
000000400 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000000400 588__ $$aDataset connected to Web of Science, Pubmed
000000400 650_2 $$2MeSH$$aBiomechanics
000000400 650_2 $$2MeSH$$aCell Adhesion
000000400 650_2 $$2MeSH$$aElasticity
000000400 650_2 $$2MeSH$$aIntegrins: metabolism
000000400 650_2 $$2MeSH$$aModels, Biological
000000400 650_2 $$2MeSH$$aOligopeptides: metabolism
000000400 650_2 $$2MeSH$$aProtein Transport
000000400 650_2 $$2MeSH$$aUnilamellar Liposomes: metabolism
000000400 650_7 $$00$$2NLM Chemicals$$aIntegrins
000000400 650_7 $$00$$2NLM Chemicals$$aOligopeptides
000000400 650_7 $$00$$2NLM Chemicals$$aUnilamellar Liposomes
000000400 650_7 $$099896-85-2$$2NLM Chemicals$$aarginyl-glycyl-aspartic acid
000000400 650_7 $$2WoSType$$aJ
000000400 65320 $$2Author$$acell adhesion under force
000000400 65320 $$2Author$$adynamic reflection interference contrast microscopy
000000400 65320 $$2Author$$amagnetic tweezers
000000400 65320 $$2Author$$amobile integrin-RGD bonds
000000400 65320 $$2Author$$amodel systems
000000400 7001_ $$0P:(DE-Juel1)VDB57655$$aSengupta, K.$$b1$$uFZJ
000000400 7001_ $$0P:(DE-HGF)0$$aGoennewein, S.$$b2
000000400 7001_ $$0P:(DE-HGF)0$$aSeifert, U.$$b3
000000400 7001_ $$0P:(DE-HGF)0$$aSackmann, E.$$b4
000000400 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.0801706105$$gVol. 105, p. 6906 - 6911$$p6906 - 6911$$q105<6906 - 6911$$tProceedings of the National Academy of Sciences of the United States of America$$v105$$x0027-8424$$y2008
000000400 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2383988
000000400 909CO $$ooai:juser.fz-juelich.de:400$$pVDB
000000400 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000000400 9141_ $$y2008
000000400 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000400 9201_ $$0I:(DE-Juel1)VDB802$$d31.12.2010$$gIBN$$kIBN-4$$lBiomechanik$$x0
000000400 970__ $$aVDB:(DE-Juel1)100768
000000400 980__ $$aVDB
000000400 980__ $$aConvertedRecord
000000400 980__ $$ajournal
000000400 980__ $$aI:(DE-Juel1)ICS-7-20110106
000000400 980__ $$aUNRESTRICTED
000000400 981__ $$aI:(DE-Juel1)IBI-2-20200312
000000400 981__ $$aI:(DE-Juel1)ICS-7-20110106