000040216 001__ 40216
000040216 005__ 20180210131526.0
000040216 0247_ $$2pmid$$apmid:15369855
000040216 0247_ $$2DOI$$a10.1016/j.mimet.2004.07.004
000040216 0247_ $$2WOS$$aWOS:000224363000005
000040216 037__ $$aPreJuSER-40216
000040216 041__ $$aeng
000040216 082__ $$a570
000040216 084__ $$2WoS$$aBiochemical Research Methods
000040216 084__ $$2WoS$$aMicrobiology
000040216 1001_ $$0P:(DE-Juel1)VDB764$$aKlauth, P.$$b0$$uFZJ
000040216 245__ $$aEnumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles
000040216 260__ $$aNew York, NY$$bElsevier$$c2004
000040216 300__ $$a189 - 198
000040216 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000040216 3367_ $$2DataCite$$aOutput Types/Journal article
000040216 3367_ $$00$$2EndNote$$aJournal Article
000040216 3367_ $$2BibTeX$$aARTICLE
000040216 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000040216 3367_ $$2DRIVER$$aarticle
000040216 440_0 $$03539$$aJournal of Microbiological Methods$$v59$$x0167-7012$$y2
000040216 500__ $$aRecord converted from VDB: 12.11.2012
000040216 520__ $$aTotal counts in soils are usually determined using fluorescent dyes, such as DAPI or Sybr green, due to fluorescence enhancement if they are bound to nucleic acids. Unfortunately, these commonly used dyes stain soil particles as well. Therefore, besides fluorescence enhancement, sufficient spectral differentiation is also required. We present a new procedure that overcomes the problems of visualising bacteria on surfaces in soil and avoids the separation of soil particles to a large extent. Spectral differentiation between bacteria and soil matrix is achieved by using Sytox green and a suboptimal excitation wavelength. Bacteria exhibit a bright green fluorescence, while soil particles fluoresce blue or red. Slight homogenisation and sedimentation of the sand and coarse silt that were too big for microscopic investigations were the only separation steps required. We compared the proposed Sytox green staining with Sybr green staining. The recovery of Sybr green-stained cells amounted to 38%, whereas in samples stained by Sytox green 81% of the spiked cells were counted. Sytox green can also be combined with fluorescence in situ hybridisation (FISH) using deep red dyes such as Cy5.
000040216 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000040216 588__ $$aDataset connected to Web of Science, Pubmed
000040216 650_2 $$2MeSH$$aAluminum Silicates
000040216 650_2 $$2MeSH$$aBacillus subtilis: isolation & purification
000040216 650_2 $$2MeSH$$aBacillus subtilis: metabolism
000040216 650_2 $$2MeSH$$aCell Membrane: metabolism
000040216 650_2 $$2MeSH$$aFluorescent Dyes: chemistry
000040216 650_2 $$2MeSH$$aFluorescent Dyes: metabolism
000040216 650_2 $$2MeSH$$aMicroscopy, Fluorescence: methods
000040216 650_2 $$2MeSH$$aOrganic Chemicals
000040216 650_2 $$2MeSH$$aPseudomonas: isolation & purification
000040216 650_2 $$2MeSH$$aPseudomonas: metabolism
000040216 650_2 $$2MeSH$$aRalstonia: isolation & purification
000040216 650_2 $$2MeSH$$aRalstonia: metabolism
000040216 650_2 $$2MeSH$$aSoil Microbiology
000040216 650_2 $$2MeSH$$aSpectrophotometry, Ultraviolet
000040216 650_7 $$00$$2NLM Chemicals$$aAluminum Silicates
000040216 650_7 $$00$$2NLM Chemicals$$aFluorescent Dyes
000040216 650_7 $$00$$2NLM Chemicals$$aOrganic Chemicals
000040216 650_7 $$00$$2NLM Chemicals$$aSYTOX Green
000040216 650_7 $$01302-87-0$$2NLM Chemicals$$aclay
000040216 650_7 $$2WoSType$$aJ
000040216 65320 $$2Author$$aSytox green
000040216 65320 $$2Author$$atotal counts
000040216 65320 $$2Author$$adigital image analysis
000040216 7001_ $$0P:(DE-HGF)0$$aWilhelm, R.$$b1
000040216 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, E.$$b2$$uFZJ
000040216 7001_ $$0P:(DE-Juel1)VDB4009$$aPoschen, L.$$b3$$uFZJ
000040216 7001_ $$0P:(DE-Juel1)129462$$aGroeneweg, J.$$b4$$uFZJ
000040216 773__ $$0PERI:(DE-600)1483012-7$$a10.1016/j.mimet.2004.07.004$$gVol. 59, p. 189 - 198$$p189 - 198$$q59<189 - 198$$tJournal of microbiological methods$$v59$$x0167-7012$$y2004
000040216 8567_ $$uhttp://dx.doi.org/10.1016/j.mimet.2004.07.004
000040216 909CO $$ooai:juser.fz-juelich.de:40216$$pVDB
000040216 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000040216 9141_ $$y2004
000040216 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000040216 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000040216 970__ $$aVDB:(DE-Juel1)53448
000040216 980__ $$aVDB
000040216 980__ $$aConvertedRecord
000040216 980__ $$ajournal
000040216 980__ $$aI:(DE-Juel1)IBG-3-20101118
000040216 980__ $$aUNRESTRICTED
000040216 981__ $$aI:(DE-Juel1)IBG-3-20101118