001     40222
005     20180210134038.0
024 7 _ |2 DOI
|a 10.1023/B:WATE.0000038883.86688.83
024 7 _ |2 WOS
|a WOS:000223486100010
037 _ _ |a PreJuSER-40222
041 _ _ |a eng
082 _ _ |a 333.7
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Leistra, M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Computations on the Volatilisation of the Fungicide Fenpropimorph from Plants in a Wind Tunnel
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2004
300 _ _ |a 133 - 148
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Water Air and Soil Pollution
|x 0049-6979
|0 12481
|v 157
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Volatilisation of pesticides from plants is one of the main pathways for their emission to the environment. A simplified computation model was set up to simulate this volatilisation, including penetration into plants and photochemical transformation as competing processes. Previous wind tunnel experiments using plants sprayed with C-14-labelled fenpropimorph were simulated using the model. Volatilisation could be simulated by diffusion through a laminar air-boundary layer, with a thickness in the range of 0.5-1.0 mm. Rate coefficients of 1.7-4.8 d(-1) had to be used to simulate the penetration of fenpropimorph into different plant species. The rate of phototransformation was lowest when the incoming air stream was filtered through activated carbon, thus minimising the formation of hydroxyl radicals by sunlight. The simulations enabled us to estimate model parameters that could neither be derived from laboratory studies nor could be obtained with pesticide (non-labelled) in the field.
536 _ _ |a Chemie und Dynamik der Geo-Biosphäre
|c U01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK257
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a air
653 2 0 |2 Author
|a diffusion
653 2 0 |2 Author
|a leaves
653 2 0 |2 Author
|a micro-ecosystem
653 2 0 |2 Author
|a model
653 2 0 |2 Author
|a pesticide
653 2 0 |2 Author
|a photodegradation
653 2 0 |2 Author
|a transformation
653 2 0 |2 Author
|a uptake
653 2 0 |2 Author
|a vapour
700 1 _ |a Wolters, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB1807
773 _ _ |a 10.1023/B:WATE.0000038883.86688.83
|g Vol. 157, p. 133 - 148
|p 133 - 148
|q 157<133 - 148
|0 PERI:(DE-600)1479824-4
|t Water, air & soil pollution
|v 157
|y 2004
|x 0049-6979
856 7 _ |u http://dx.doi.org/10.1023/B:WATE.0000038883.86688.83
909 C O |o oai:juser.fz-juelich.de:40222
|p VDB
913 1 _ |k U01
|v Chemie und Dynamik der Geo-Biosphäre
|l Chemie und Dynamik der Geo-Biosphäre
|b Environment (Umwelt)
|0 G:(DE-Juel1)FUEK257
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-IV
|l Agrosphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB50
|x 0
970 _ _ |a VDB:(DE-Juel1)53469
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21