000040231 001__ 40231
000040231 005__ 20210812080511.0
000040231 0247_ $$2DOI$$a10.1111/j.1365-2486.2005.00988.x
000040231 0247_ $$2WOS$$aWOS:000230726600001
000040231 037__ $$aPreJuSER-40231
000040231 041__ $$aENG
000040231 082__ $$a570
000040231 084__ $$2WoS$$aBiodiversity Conservation
000040231 084__ $$2WoS$$aEcology
000040231 084__ $$2WoS$$aEnvironmental Sciences
000040231 1001_ $$0P:(DE-HGF)0$$aAnanyev, G.$$b0
000040231 245__ $$aRemote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoides under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced ...
000040231 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2005
000040231 300__ $$a1195 - 1206
000040231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000040231 3367_ $$2DataCite$$aOutput Types/Journal article
000040231 3367_ $$00$$2EndNote$$aJournal Article
000040231 3367_ $$2BibTeX$$aARTICLE
000040231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000040231 3367_ $$2DRIVER$$aarticle
000040231 440_0 $$011441$$aGlobal Change Biology$$v11$$x1354-1013$$y8
000040231 500__ $$aRecord converted from VDB: 12.11.2012
000040231 520__ $$aDetermining the spatial and temporal diversity of photosynthetic processes in forest canopies presents a challenge to the evaluation of biological feedbacks needed for improvement of carbon and climate models. Limited access with portable instrumentation, especially in the outer canopy, makes remote sensing of these processes a priority in experimental ecosystem and climate change research. Here, we describe the application of a new, active, chlorophyll fluorescence measurement system for remote sensing of light use efficiency, based on analysis of laser-induced fluorescence transients (LIFT). We used mature stands of Populus grown at ambient (380 ppm) and elevated CO2 (1220 ppm) in the enclosed agriforests of the Biosphere 2 Laboratory (B2L) to compare parameters of photosynthetic efficiency, photosynthetic electron transport, and dissipation of excess light measured by LIFT and by standard on-the-leaf saturating flash methods using a commercially available pulse-modulated chlorophyll fluorescence instrument (Mini-PAM). We also used LIFT to observe the diel courses of these parameters in leaves of two tropical forest dominants, Inga and Pterocarpus, growing in the enclosed model tropical forest of B2L. Midcanopy leaves of both trees showed the expected relationships among chlorophyll fluorescence-derived photosynthetic parameters in response to sun exposure, but, unusually, both displayed an afternoon increase in nonphotochemical quenching in the shade, which was ascribed to reversible inhibition of photosynthesis at high leaf temperatures in the enclosed canopy. Inga generally showed higher rates of photosynthetic electron transport, but greater afternoon reduction in photosynthetic efficiency. The potential for estimation of the contribution of outer canopy photosynthesis to forest CO2 assimilation, and assessment of its response to environmental stress using remote sensing devices such as LIFT, is briefly discussed.
000040231 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000040231 588__ $$aDataset connected to Web of Science, Pubmed
000040231 65320 $$2Author$$abiosphere 2 laboratory
000040231 65320 $$2Author$$achlorophyll fluorescence
000040231 65320 $$2Author$$ahigh-temperature stress
000040231 65320 $$2Author$$alaser-induced fluorescence transients
000040231 65320 $$2Author$$anonphotochemical quenching
000040231 65320 $$2Author$$aPSII efficiency
000040231 65320 $$2Author$$aremote sensing
000040231 7001_ $$0P:(DE-HGF)0$$aKolber, Z. S.$$b1
000040231 7001_ $$0P:(DE-HGF)0$$aKlimov, D.$$b2
000040231 7001_ $$0P:(DE-HGF)0$$aFalkowski, P. G.$$b3
000040231 7001_ $$0P:(DE-HGF)0$$aBerry, J. A.$$b4
000040231 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b5$$uFZJ
000040231 7001_ $$0P:(DE-HGF)0$$aMartin, J. M.$$b6
000040231 7001_ $$0P:(DE-HGF)0$$aOsmond, B.$$b7
000040231 773__ $$0PERI:(DE-600)2020313-5$$a10.1111/j.1365-2486.2005.00988.x$$gVol. 11, p. 1195 - 1206$$p1195 - 1206$$q11<1195 - 1206$$tGlobal change biology$$v11$$x1354-1013$$y2005
000040231 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-2486.2005.00988.x
000040231 909CO $$ooai:juser.fz-juelich.de:40231$$pVDB
000040231 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000040231 9141_ $$y2005
000040231 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000040231 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000040231 970__ $$aVDB:(DE-Juel1)53488
000040231 980__ $$aVDB
000040231 980__ $$aConvertedRecord
000040231 980__ $$ajournal
000040231 980__ $$aI:(DE-Juel1)IBG-2-20101118
000040231 980__ $$aUNRESTRICTED
000040231 981__ $$aI:(DE-Juel1)IBG-2-20101118
000040231 981__ $$aI:(DE-Juel1)ICG-3-20090406