000040329 001__ 40329
000040329 005__ 20180210143059.0
000040329 0247_ $$2DOI$$a10.1016/S0039-6028(01)01342-5
000040329 0247_ $$2WOS$$aWOS:000170849400007
000040329 037__ $$aPreJuSER-40329
000040329 041__ $$aeng
000040329 082__ $$a540
000040329 084__ $$2WoS$$aChemistry, Physical
000040329 084__ $$2WoS$$aPhysics, Condensed Matter
000040329 1001_ $$0P:(DE-Juel1)VDB5555$$aPan, F. M.$$b0$$uFZJ
000040329 245__ $$aOxidation of the CoGa(100) surface at temperatures between 600 and 900 K
000040329 260__ $$aAmsterdam$$bElsevier$$c2001
000040329 300__ $$aL609
000040329 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000040329 3367_ $$2DataCite$$aOutput Types/Journal article
000040329 3367_ $$00$$2EndNote$$aJournal Article
000040329 3367_ $$2BibTeX$$aARTICLE
000040329 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000040329 3367_ $$2DRIVER$$aarticle
000040329 440_0 $$05673$$aSurface Science$$v490$$x0039-6028
000040329 500__ $$aRecord converted from VDB: 12.11.2012
000040329 520__ $$aThe oxidation of the CoGa(1 0 0) surface at temperatures above 600 K has been studied by means of thermal energy helium atom scattering and Auger electron spectroscopy. The oxide grows in large domains with an estimated mean size of 40 nm or larger, and with a constant thickness. The order of the oxide film can be improved by increasing the oxidation temperature. Although the oxide is found to be unstable at temperatures above 850 K, we are able to prepare an oxide film at 900 K by oxidizing the CoGa(1 0 0) surface and cooling the surface down in an oxygen atmosphere with a pressure larger than 2 X 10(-7) mbar. The oxide film prepared at 900 K showed the highest reflectivity for He atoms, suggesting that the qualitatively best films are obtained at this high oxidation temperature. (C) 2001 Elsevier Science B.V. All rights reserved.
000040329 536__ $$0G:(DE-Juel1)FUEK61$$2G:(DE-HGF)$$aGrenzflächenaspekte der Informationstechnik$$c29.35.0$$x0
000040329 588__ $$aDataset connected to Web of Science
000040329 650_7 $$2WoSType$$aJ
000040329 65320 $$2Author$$aatom-solid scattering and diffraction-inelastic
000040329 65320 $$2Author$$aoxidation
000040329 65320 $$2Author$$asticking
000040329 65320 $$2Author$$asurface structure, morphology roughness, and topography
000040329 65320 $$2Author$$aCobalt
000040329 65320 $$2Author$$aGallium
000040329 65320 $$2Author$$alow index single crystal surfaces
000040329 7001_ $$0P:(DE-Juel1)VDB5560$$aPflitsch, C.$$b1$$uFZJ
000040329 7001_ $$0P:(DE-Juel1)VDB5790$$aDavid, R.$$b2$$uFZJ
000040329 7001_ $$0P:(DE-Juel1)VDB5574$$aVerheij, L. K.$$b3$$uFZJ
000040329 7001_ $$0P:(DE-Juel1)VDB5400$$aFranchy, R.$$b4$$uFZJ
000040329 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/S0039-6028(01)01342-5$$gVol. 490, p. L609$$pL609$$q490<L609$$tSurface science$$v490$$x0039-6028$$y2001
000040329 909CO $$ooai:juser.fz-juelich.de:40329$$pVDB
000040329 9131_ $$0G:(DE-Juel1)FUEK61$$bInformationstechnik$$k29.35.0$$lGrundlagenforschung zur Informationstechnik$$vGrenzflächenaspekte der Informationstechnik$$x0
000040329 9141_ $$y2001
000040329 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000040329 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000040329 970__ $$aVDB:(DE-Juel1)5377
000040329 980__ $$aVDB
000040329 980__ $$aConvertedRecord
000040329 980__ $$ajournal
000040329 980__ $$aI:(DE-Juel1)PGI-3-20110106
000040329 980__ $$aUNRESTRICTED
000040329 981__ $$aI:(DE-Juel1)PGI-3-20110106