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Maximum-Likelihood Principle for Determining
Positions in Neutron Scintillation Detectors

J. Schelten, R. Engels, and R. Reinartz

Abstract—Pulse height division is generally used to determine
a position channel for storing detection events in position-sensi-
tive detectors (PSDs). An alternative method based on the max-
imum likelihood principle is discussed. This principle is modified
in order that the storage of events can be done online. Analytic ex-
pressions for the spatial resolution are derived and evaluated Both
detection methods are simulated for linear PSDs. Results on unifor-
mity, linearity, stability and spatial resolution are presented. The
major specific advantage of the proposed method is an improved
uniformity of the response along the entire detector.

I. INTRODUCTION

USING position-sensitive detectors (PSDs) with a large
sensitive area, high resolution, and linear response is

frequently the only way to improve the experimental situation
in nuclear medicine and nuclear physics.

In positron emission tomography (PET), the total amount of
detectable coincident gammas can not be increased because the
dose of radioactive pharmaceuticals a patient can carry, and the
data acquisition time a patient can tolerate, are already at their
upper limits. Thus, only the detection of all emitted gamma rays
can improve PET images.

In neutron scattering experiments, the scattering data often
have large error bars. A drastic increase of neutron flux at the
sample cannot be expected from advanced neutron sources, such
as future high-flux reactors or pulsed spallation neutron facili-
ties. Only with detectors which detect all scattered neutrons is
the situation is improvable.

These two examples demonstrate that progress in position-
sensitive detection of high energy gammas and thermal neutrons
plays a key role.

In scintillation detectors equipped with phase modulation
(PM) arrays [1], [2], or with position-sensitive PMs [3], [4], in
semiconductor strip diodes [5], and in microstrip gas detectors
[6], [7] usually, the position channel for storing a detection
event is determined by pulse height division. This method is
certainly not the best although, in many cases, excellent results
have been obtained.

For high count rates, it is not tolerable that all detector signals
are used to determine a position estimate because in this case
a completely wrong answer is obtained if two or more events
occur at the same time. The alternative would be to obtain po-
sition information only from those few PM signals which con-
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tribute mostly to the position determination, because this allows
to treat simultaneously occuring events correctly. For detectors
which operate at pulsed neutron sources, where bursts of neu-
trons need to be treated, this argument plays an important role.
In this context, the maximum-likelihood principle is helpful.

In the fundamental paper by Tanaka [8], the position func-
tions of scintillation detectors was investigated in general. The
position function has the PM signals as argument and yields an
estimate of the event position. Tanaka derived relations of the
position function for getting best resolution and linear response,
and suggested how to realize the condition with a delay line
readout electronic. His ideas were experimentally verified in [9]
and [10]. Five years later, Gray and Macovski [11] were the first
to discuss the position determination with the maximum-likeli-
hood (ML) principle. There, it was shown that the ML estimate
implies a solution that is remarkably similar to the “optimum
position arithmetic” as derived by Tanaka. As a consequence,
the method implies not only a linear detector response but also
a spatial resolution which is close to its optimum value. In the
following years attempts were made to implement the ML prin-
ciple in scintillation detectors with analog electronic [12]–[14].
In addition digital implementation was realized for large scin-
tillation detectors consisting of small modules with only four
PMs. For the module signals the ML method was applied suc-
cessfully to determine the storage locations via lookup tables.
[15] and [16]. The lookup tables were filled with most-prob-
able event positions which are calculated from two PM row and
column sum signals.

In our laboratory, the detector development focuses on linear
and area scintillation detectors for thermal neutrons. The new
detector electronic consists of free-running analog-to-digital
converters (ADCs) and fast digital data treatment in field-pro-
grammable gate arrays (FPGAs) and digital signal processors
(DSPs). In these detectors, simultaneously occuring events
must be recorded, for which the ML method is helpful, as was
mentioned above.

Thus far, simulations have been done for the one-dimensional
detector, in which only the two most significant PM signals are
selected for position determination and for the two-dimensional
case where four PMs are needed to determine theand posi-
tions.

The simulations clearly demonstrated that the separation of
variables, as discussed in [15], does not yield satisfactory re-
sults. i.e., the two-dimensional case does not separate well into
two linear cases in which thecoordinates are determined from
the sum signals of columns and thecoordinate from sum sig-
nals of rows. For the two-dimensional detector, a modification
of the ML method has to be developed which yields a vector
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position from the four most significant PMs in an efficient way
which can be applied to online data with 1 MHz repetition rate
in DSP.

Because of the large difference in the concepts for the linear
and the area detector, in this paper only the linear case is pre-
sented. For the area detector, it must be shown first that the re-
quired data calculations to obtain the maximum probability, can
be done fast enough in DSPs.

In Section II, the concept is described. There, the exact ML
treatment is modified such that an online event storage is pos-
sible. Analytical expressions for the spatial resolution are de-
rived.

In Sections III and IV, more practical results are presented.
They are obtained by simulating linear scintillation PSDs with
five PMs. The simulations allow a comparison of the ML
method with the classical center of mass method.

Finally, in Section V, the results are summarized and the value
of both methods is discussed critically.

II. M AXIMUM -LIKELIHOOD PRINCIPLE

If
possible signal from a PM, strip or wire;
th expectation function for position , i.e.,

;
number of channels for a linear detector of length

;
number of PMs, strips, or wires;
position with number .
is the probability of the Poisson. Then, the most

probable event position is defined in

(1)
This equation was discussed almost 25 years ago by Gray and
Macovscy (1976) [11].

With sufficient accuracy, the probability functions can be ap-
proximated by Gaussian distributions as done in (2)

(2)

This approximation and the next one, which leads to equation
(4), are necessary to make if one is forced to find the position
of maximum probability by an on-line calculation within a very
short time before the next event occurs.

The probability functions are normalized to one according to

(3)

The valuable feature of the maximum-likelihood principle is
that the expectation value of the position event is identical with
the true event, i.e., . Consequently, the detector re-
sponse is exactly linear.

Since the probability functions in (2) are sharply peaked, the
maximum-likelihood principle is well approximated by the least
square deviation principle

(4)
The parameter has been introduced because the minimum

search result should not depend on the absolute value of the
signals , but solely on their ratios.

Reducing the minimum calculation to only those two signals
and , which are the largest neighbored pairs among all
possible pairs, the minimization with respect toleads to

(5)

Obviously, the minimum search for two signal pairs
( ) and ( ) yields the same event position for
all values of .

This simplification is deliberately done because lookup tables
can then be used. If more than two PM signals are involved in the
position estimate, the lookup table becomes too large in size. It
is the purpose of this treatment to investigate how much impact
this simplification has on the spatial resolution.

With the linear relation of channel positions and channel
number

(6)

one determines a minimum channel number according to (7)

(7)

The minimum search can be done offline for all possible de-
tector signals, and the results can be tabulated for later use.

The table has three integer entries, [ , and ]. With
an 8-bit ADC, the and both have 256 possible values.
For a big detector with, e.g., 64 PMs, the number of entries is

. The content of the table is the calculated
integer from (7), i.e.,

(8)

The computer time to fill the table is moderate, about 10 min
with a PC of 300 MHz.

For the simulations, a PM array of five PMs was sufficient to
demonstrate all effects, and a signal of seven bits was accurate
enough.

In this case, the table has a size 6.6 10entries and filling the
table took about 10 s.

Such prepared tables are used to handle a detector event. The
event is represented by a set of signals { }
from which the pair of strongest signals is selected. The se-
lection leads to the triplet [ ] and, via the tabulated
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values (8), to the channel number. Finally, the content of
this channel is incremented by one.

The spatial detector resolution is determined by the fluctua-
tion of the statistical variables , with variances

The variation of the minimum condition of (5) requires

(9)

and leads to the following expression for the variance of point
spread function:

(10)

The variance is a function of the involved expectation func-
tions and their derivatives . In addition, it depends
directly on the averaged total number of involved elec-
trons per event. This number is proportional to the sum

.
There must exist an expectation function which min-

imizes the spatial resolution. For a homogeneous detector, the
two functions and are not independent, since
the relation then holds, where is the
distance between adjacent PMs. Thus, the variational problem
is reduced to only one function. Nevertheless, the problem re-
mains difficult and the authors were not able to solve it.

III. PULSE HEIGHT DIVISION METHOD

This classical estimate of event positions is based solely on
the set of the statistical variables { }, and
does not need information of the expectation functions. The
event position is determined in a center of mass equation

(11)

In a first-order approximation the expectation value ofis:

(12)

This relation versus the true position is a nonlinear
function, and nonlinearities are particularly severe at the two
detector ends.

Fig. 1. Sketch of a linear scintillation detector with five PMs, a disperser, a
scintillator, and an air gap.

Fig. 2. Expectation functionsB (x) versus detector position for an array of
five PMs with the reference parameters, given in the text.

The variance of point spread function which is a measure of
spatial resolution is given in the following equation:

(13)

The calculation utilizing the fluctuation variances of the
signal leads to the following expression

(14)

The bar operations are explicitly expressed in the following
two equations:

(15a)

(15b)

Again, the variance of a point spread function is determined
by two factors, the averaged total number of involved elec-
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(a) (b)

(c)

Fig. 3. (a) and (b) Point spread functions generated at nine detector positions with data handling due to the maximun-likelihood principle. (c) Intensity versus
position channel accumulated at hundreds of hundreds of homogeneously distributed detector positions with data handling due to the maxium-likelihood principle.
This plot simulates homogeneous illumination of a detector.

trons generated at the photo cathodes per event and the expecta-
tion functions with their derivatives. Both contributions
cause a position dependence of the resolution.

Again, it is a major unsolved task to find the expectation func-
tion which minimizes the spatial resolution, and then try
to realize the optimal distributions.

IV. SIMULATION RESULTS

The simulation of both detection methods was done for a
linear scintillation detector with five PMs.

As sketched in Fig. 1, the generated light from an absorbed
neutron or gamma ray in the scintillator, is distributed on the
PM photo cathodes. Because of an air gap between scintillator
and disperser, light rays outside the indicated cone are totally
reflected at the scintillator faces and cannot reach the photo
cathodes.

The light distribution can be influenced by two parameters:
1) with the cone angle 2and 2) with the disperser thickness

. Reference values for the detector simulations are distance
and diameter of the PMs, cone angle

and disperser thickness . In addition, the total number
of generated photo electrons is an adjustable parameter. The ref-
erence value is 400. With these reference values the simulated
detector approaches the JULIOS detector [1], [3], which is used
in neutron powder diffractometers at various reactor stations.

The distributions as measured with the JULIOS detector were
well represented by such distributions as shown in Fig. 2. Due
to the air gap between disperser and PM, the distributions do
not show the long tails as generally observed in Anger cameras.
The curves are little effected by PM nonuniformities because
the signals are resulting from averaging integrals over the whole
photo-cathode area.

In Fig. 2, the five expectation functions are shown
versus the detector position. They have been calculated for the
reference detector assuming a uniform PM sensitivity. Experi-
mentally, these curves can be determined by scanning a narrow
beam across the detector and by determining the pulse height
average. With these distributions, the table Tab( ) is
filled with calculated channels for all possible values

, and . This table is then used
for simulating measurements.

The steps for handling a detector event at a given position due
to the maximum-likelihood method are as follows.

1) For the given position, a set of {
} values exist, which have the meaning of PM

signals on average for this position. With a Poisson
random number generator a set of signals {

} is obtained. Such a set represents a detector
event.

2) From this set of signals, the largest signal pair ( )
is selected.
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(a) (b)

(c)

Fig. 4. (a) and (b) Point spread functions generated at nine detector positions with data storage due to the center of mass method. (c) Intensity versusposition
channel accumulated at hundreds of homogeneously distributed detector positions with data storage due to the maxium-likelihood principle. This plot simulates
homogeneous illumination of a detector.

3) This signal pair is used as entry of the table in order to get
the most probable channel. The content of this channel is
incremented by one.

In Fig. 3(a) and (b), point-spread functions are generated by
creating events at nine detector positions. The FWHM values of
the generated peaks are position dependent. If one assumes 400
electrons per event on average, the FWHM is about 10% of the
number of channels per PM (64 channels per PM) or 10% of the
PM distance.

For a homogeneous generation of detector events along the
detector, one gets a constant intensity profile. The channel
contents fluctuate only randomly about an average content, see
Fig. 3(c). No peculiarities are observed at the middle between
two consecutive PMs nor at the center of a PM.

The results are compared with simulated data based on the
center of mass principle. The steps for handling a detector event
are similar.

1) For the given position, a set of {
} values exist, which have the meaning of PM sig-

nals on average for this position. With a Poisson random
number generator a set of signals { }
is obtained which represents the detector event.

2) From this set, the ratio due to (11) is evaluated.
3) The result is a channel number. The content of this

channel is then incremented by one.

In Fig. 4(a) and (b), two-point spread functions with nine
peaks are shown. The peaks have position dependent FWHM
values. On an average the peak widths are somewhat smaller
than in Fig. 3(a) and (b).

For a homogeneous generation of detector events along the
detector, one gets an oscillating intensity profile with strong
wings on both detector ends. This shape is caused by the non-
linearity of the detector response, see Fig. 4(c).

In Fig. 5, the analytic expressions of the spatial resolution are
numerically evaluated and plotted versus the detector position
for the two cases of maximum-likelihood principle and pulse
height division method. The variances are converted to FWHM
in units of channels and plotted versus the detector position. The
calculated values are in good agreement with the widths of the
peaks in Fig. 3(a) and (b) and Fig. 4(a) and (b).

In Fig. 6, the integral linearity is investigated. For many
detector events, intensity peaks are generated using both
methods. The centers of these peaks are plotted versus the
detector position. One observes the exact linear relation in the
maximum-likelihood case and the nonlinear behavior in the
center of mass case. The nonlinearity is present everywhere
and strongest at the two detector ends.

The data of Fig. 7 were generated by deliberately varying
the averaged total number of electrons per event, e.g., from 800
to 25 corresponding to an excellent to a very poor scintillator,
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Fig. 5. FWHM in units of position channels versus detector position as
calculated from analytical resolution expressions (10) and (14) for both
methods (FWHM = 2.35 (N =A)h(�x) i ; with N = 64 Channels
per PM andA = 1 of the PM distance.

Fig. 6. Peak position channel versus detector position as determined by
generating 100 events at 50 detector positions with both methods.

Fig. 7. FWHM as determined from point spread functions versus the total
number electrons per event in a double logarithmic scale.

respectively. From generated peaks, the FWHM was determined
and plotted versus the electron number in a double logarithmic
scale. The behavior, as described in (10), is verified by
getting a least squares linear fit with a slope of 0.48.

In this simulation experiment, the expectation functions were
deliberately varied by increasing the disperser thickness from
0.8 to 1.5 times the PM distance. Simultaneously, the averaged
number of electrons per event was adjusted such that the sum of

Fig. 8. FWHM as determined from point spread functions versus the extension
of the expectation functions at the PM cathode plane in units of PM distance.
The total number of electrons is adjusted such that the number of electrons of
both involved signals is always 400 on average. The adjusted total number of
electrons is also plotted in this plot.

the two signals which are used to determine the channel posi-
tion via the table is always 400 on average. The plots of Fig. 8
indicate that the shape of the expectation function has a strong
influence on the FWHM on the width of the point spread func-
tion since there is an increase by a factor of three. If one would
not correct for the averaged number of electrons for the signal
pair, the FWHM would become even broader with increasing
disperser thickness (again by a factor of about three).

In further simulation experiments, the height or the width of
one of the expectation functions was changed deliberately
by 10%, and the effect on detector response was determined. In
general, in the intensity distribution for homogeneous illumina-
tion a 10% change causes not more than 10% fluctuations, while
the influence on resolution is even less. This indicates that the
detector response is moderate and smooth.

V. SUMMARY AND DISCUSSION

The characteristic features of both methods are summarized
in the Table I.

The strength of the center of mass method is that its appli-
cation needs no more information than the signals themselves.
The spatial resolution has been found to be slightly higher in all
investigated cases. Nevertheless, this is not a proven rule for all
expectation functions.

The strength of the maximum-likelihood method is the per-
fect linearity, and that one gets satisfactory results by involving
only two PM signals. This limitation has, for semiconductor de-
tectors, the enormous advantage that the noise of all other sig-
nals cannot diminish the spatial resolution. Furthermore, this
method does not ask for a precise adjustment of the average
signal heights.

The weakness of the center of mass method is its nonlinearity,
which is moderate except at the detector ends, where it is strong.

The weakness of the maximum-likelihood method is cer-
tainly the need to provide a complete set of measured or
calculated expectation functions versus the detector positions.

For applying the maximum-likelihood principle, it is manda-
tory to digitize each PM signal, to select a significant pair, and to
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TABLE I
COMPARISON OFPROPERTIES OFBOTH DATA HANDLING METHODS

determine the increment channel. For measurements of the ex-
pectation functions, which have to be done once, it is required
to make digitized signals of all PMs available in a PC.

Since the digital data processing becomes state of the art the
maximum-likelihood principle will get a chance of realization.

Presently in our laboratory, a huge two-dimensional scintilla-
tion detector for subthermal neutrons is under construction. This
development implies two test facilities for measuring:1) the uni-
formity of the PMs and 2) the light distribution functions. These
measured information are implemented in the computer codes
for filling the tables. In addition, the light distribution calcula-
tions are refined to get close to a real scintillation detector. This
subject will be described in a separate paper in which the two di-
mensional case of the maximum likelihood principle is treated.
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