000040435 001__ 40435
000040435 005__ 20180210125616.0
000040435 0247_ $$2DOI$$a10.1080/10584580490458865
000040435 0247_ $$2WOS$$aWOS:000222470500006
000040435 037__ $$aPreJuSER-40435
000040435 041__ $$aeng
000040435 082__ $$a620
000040435 084__ $$2WoS$$aEngineering, Electrical & Electronic
000040435 084__ $$2WoS$$aPhysics, Applied
000040435 084__ $$2WoS$$aPhysics, Condensed Matter
000040435 1001_ $$0P:(DE-HGF)0$$aReichenberg, B.$$b0
000040435 245__ $$aInhomogeneous Local Conductivity Induced by Thermal Reduction in BaTiO3 Thin Films and Single Crystals
000040435 260__ $$aLondon [u.a.]$$bTaylor & Francis$$c2004
000040435 300__ $$a43 - 49
000040435 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000040435 3367_ $$2DataCite$$aOutput Types/Journal article
000040435 3367_ $$00$$2EndNote$$aJournal Article
000040435 3367_ $$2BibTeX$$aARTICLE
000040435 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000040435 3367_ $$2DRIVER$$aarticle
000040435 440_0 $$02659$$aIntegrated Ferroelectrics$$v61$$x1058-4587
000040435 500__ $$aRecord converted from VDB: 12.11.2012
000040435 520__ $$aThe potential of perovskite type materials for microelectronic applications depends on a detailed understanding of their electrical properties, especially their intrinsic charge transport mechanisms. This paper focuses on the analysis of conducting mechanisms after a thermal reduction process with a resolution in a nanoscale regime. It is known that thermal reduction leads to a decrease in the samples' resistivity. We show that this decrease might be caused by an inhomogeneous distribution of local conductivity paths. Further we investigated the properties of these paths by secondary ion mass spectrometry (SIMS) and atomic force microscopy (AFM) to find the mechanism which leads to this phenomenon. Furthermore, we show that the occurrence of local current paths can be partially reversed by an re-oxidation process at elevated temperatures.
000040435 536__ $$0G:(DE-Juel1)FUEK252$$2G:(DE-HGF)$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x0
000040435 588__ $$aDataset connected to Web of Science
000040435 650_7 $$2WoSType$$aJ
000040435 65320 $$2Author$$abarium titanate
000040435 65320 $$2Author$$aconductivity
000040435 7001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b1$$uFZJ
000040435 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b2
000040435 7001_ $$0P:(DE-Juel1)VDB2782$$aBreuer, U.$$b3$$uFZJ
000040435 7001_ $$0P:(DE-HGF)0$$aTiedke, S.$$b4
000040435 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5$$uFZJ
000040435 773__ $$0PERI:(DE-600)2037916-X$$a10.1080/10584580490458865$$gVol. 61, p. 43 - 49$$p43 - 49$$q61<43 - 49$$tIntegrated ferroelectrics$$v61$$x1058-4587$$y2004
000040435 8567_ $$uhttp://dx.doi.org/10.1080/10584580490458865
000040435 909CO $$ooai:juser.fz-juelich.de:40435$$pVDB
000040435 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x0
000040435 9141_ $$y2004
000040435 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000040435 9201_ $$0I:(DE-Juel1)VDB321$$d31.12.2006$$gIFF$$kIFF-IEM$$lElektronische Materialien$$x1
000040435 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x0
000040435 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x2$$z381
000040435 970__ $$aVDB:(DE-Juel1)54266
000040435 980__ $$aVDB
000040435 980__ $$aConvertedRecord
000040435 980__ $$ajournal
000040435 980__ $$aI:(DE-Juel1)PGI-7-20110106
000040435 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000040435 980__ $$aI:(DE-Juel1)VDB381
000040435 980__ $$aUNRESTRICTED
000040435 981__ $$aI:(DE-Juel1)PGI-7-20110106
000040435 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000040435 981__ $$aI:(DE-Juel1)VDB381
000040435 981__ $$aI:(DE-Juel1)ZCH-20090406