000040823 001__ 40823
000040823 005__ 20240712101041.0
000040823 0247_ $$2DOI$$a10.1029/2003JD004333
000040823 0247_ $$2WOS$$aWOS:000221086500001
000040823 0247_ $$2ISSN$$a0141-8637
000040823 0247_ $$2Handle$$a2128/20548
000040823 0247_ $$2altmetric$$aaltmetric:2411162
000040823 037__ $$aPreJuSER-40823
000040823 041__ $$aeng
000040823 082__ $$a550
000040823 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000040823 1001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, A.$$b0$$uFZJ
000040823 245__ $$aPhotolysis frequency of O3 to O(1D): Measurements and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI)
000040823 260__ $$aWashington, DC$$bUnion$$c2004
000040823 300__ $$aD08S90
000040823 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000040823 3367_ $$2DataCite$$aOutput Types/Journal article
000040823 3367_ $$00$$2EndNote$$aJournal Article
000040823 3367_ $$2BibTeX$$aARTICLE
000040823 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000040823 3367_ $$2DRIVER$$aarticle
000040823 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v109$$x0148-0227
000040823 500__ $$aRecord converted from VDB: 12.11.2012
000040823 520__ $$a[1] The International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) took place at Boulder, Colorado, from 15 to 19 June 1998 and offered the opportunity to test how well experimental techniques and theoretical models can determine the photolysis frequency of O-3 --> O(D-1) in the troposphere. Different techniques measured the downwelling 2pi sr component of j((OD)-D-1) at the ground and were blindly compared to each other. Moreover, theoretical j((OD)-D-1) model results were blindly compared to data measured under clear sky at relatively low aerosol optical density. Six experimental groups operated one chemical actinometer (CA), six spectroradiometers (SR), and four filter radiometers (FR). General good agreement with deviations less than 10% among the radiometers (SR and FR) was found for solar zenith angles (SZA) less than 60degrees, provided that the instruments used similar absorption cross sections, quantum yields, and temperatures for deriving j((OD)-D-1). The deviations were generally larger at high solar zenith angles and reached a factor of 2 in some cases. Two spectroradiometers and one filter radiometer showed excellent agreement with each other and with the chemical actinometer at all solar zenith angles up to at least 80degrees within typically 5%. These radiometers used recently published O(D-1) quantum yield data and explicitly considered the temperature dependence of j((OD)-D-1). This good agreement shows that each of the different categories of instruments (CA, SR, and FR) is in principle capable of accurate determinations of j((OD)-D-1). A large sensitivity was found to the choice of data for the O(D-1) quantum yield. The best agreement between spectroradiometry and chemical actinometry was obtained when recently published quantum yield data were used. The IPMMI study thus supports the quantum yield recommendation by National Aeronautics and Space Administration-Jet Propulsion Laboratory [Sander et al., 2003] and International Union of Pure and Applied Chemistry (IUPAC) (http://www.iupac-kinetic.ch.cam.ac.uk; data sheet POx2 from 2001). Fifteen models that were operated by 12 model groups participated in the comparison of modeled j((OD)-D-1) with measured data. Most models agreed within 15% with the spectroradiometer-derived j((OD)-D-1) values under clear sky at SZA < 75 degrees, provided that they used similar absorption cross sections, quantum yields, and temperatures. While most models simulated the measured actinic flux quite well, significant deviations in j((OD)-D-1) were observed in cases when outdated O(D-1) quantum yield data or inappropriate temperature data were used.
000040823 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000040823 588__ $$aDataset connected to Web of Science
000040823 650_7 $$2WoSType$$aJ
000040823 65320 $$2Author$$aphotolysis frequency
000040823 65320 $$2Author$$aozone
000040823 65320 $$2Author$$aO(D-1)
000040823 65320 $$2Author$$ameasurement
000040823 65320 $$2Author$$aradiative transfer modeling
000040823 65320 $$2Author$$aintercomparison
000040823 7001_ $$0P:(DE-HGF)0$$aLefer, B. L.$$b1
000040823 7001_ $$0P:(DE-HGF)0$$aMonks, P. S.$$b2
000040823 7001_ $$0P:(DE-HGF)0$$aHall, S. R.$$b3
000040823 7001_ $$0P:(DE-HGF)0$$aKylling, A.$$b4
000040823 7001_ $$0P:(DE-HGF)0$$aMayer, B.$$b5
000040823 7001_ $$0P:(DE-HGF)0$$aShetter, R. E.$$b6
000040823 7001_ $$0P:(DE-HGF)0$$aJunkermann, W.$$b7
000040823 7001_ $$0P:(DE-HGF)0$$aBais, A.$$b8
000040823 7001_ $$0P:(DE-HGF)0$$aCalvert, J. G.$$b9
000040823 7001_ $$0P:(DE-HGF)0$$aCantrell, C. A.$$b10
000040823 7001_ $$0P:(DE-HGF)0$$aMadronich, S.$$b11
000040823 7001_ $$0P:(DE-HGF)0$$aEdwards, G. D.$$b12
000040823 7001_ $$0P:(DE-Juel1)VDB832$$aKraus, A.$$b13$$uFZJ
000040823 7001_ $$0P:(DE-Juel1)VDB1106$$aMüller, M.$$b14$$uFZJ
000040823 7001_ $$0P:(DE-Juel1)2693$$aBohn, B.$$b15$$uFZJ
000040823 7001_ $$0P:(DE-HGF)0$$aSchmitt, R.$$b16
000040823 7001_ $$0P:(DE-HGF)0$$aJohnston, P.$$b17
000040823 7001_ $$0P:(DE-HGF)0$$aMcKenzie, R.$$b18
000040823 7001_ $$0P:(DE-HGF)0$$aFrost, G. J.$$b19
000040823 7001_ $$0P:(DE-HGF)0$$aGriffioen, E.$$b20
000040823 7001_ $$0P:(DE-HGF)0$$aKrol, M.$$b21
000040823 7001_ $$0P:(DE-HGF)0$$aMartin, T.$$b22
000040823 7001_ $$0P:(DE-HGF)0$$aPfister, G.$$b23
000040823 7001_ $$0P:(DE-Juel1)16301$$aRöth, E. P.$$b24$$uFZJ
000040823 7001_ $$0P:(DE-HGF)0$$aRuggaber, A.$$b25
000040823 7001_ $$0P:(DE-HGF)0$$aSwartz, W. H.$$b26
000040823 7001_ $$0P:(DE-HGF)0$$aLloyd, S. A.$$b27
000040823 7001_ $$0P:(DE-HGF)0$$avan Weele, M.$$b28
000040823 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2003JD004333$$gVol. 109, p. D08S90$$pD08S90$$q109<D08S90$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v109$$x0148-0227$$y2004
000040823 8567_ $$uhttp://dx.doi.org/10.1029/2003JD004333
000040823 8564_ $$uhttps://juser.fz-juelich.de/record/40823/files/2003JD004333.pdf$$yOpenAccess
000040823 8564_ $$uhttps://juser.fz-juelich.de/record/40823/files/2003JD004333.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000040823 909CO $$ooai:juser.fz-juelich.de:40823$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000040823 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000040823 9141_ $$y2004
000040823 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000040823 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000040823 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000040823 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000040823 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000040823 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000040823 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000040823 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x0
000040823 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x1
000040823 970__ $$aVDB:(DE-Juel1)55486
000040823 9801_ $$aFullTexts
000040823 980__ $$aVDB
000040823 980__ $$aConvertedRecord
000040823 980__ $$ajournal
000040823 980__ $$aI:(DE-Juel1)IEK-8-20101013
000040823 980__ $$aI:(DE-Juel1)IEK-7-20101013
000040823 980__ $$aUNRESTRICTED
000040823 981__ $$aI:(DE-Juel1)ICE-3-20101013
000040823 981__ $$aI:(DE-Juel1)ICE-4-20101013
000040823 981__ $$aI:(DE-Juel1)ICE-3-20101013
000040823 981__ $$aI:(DE-Juel1)IEK-8-20101013
000040823 981__ $$aI:(DE-Juel1)IEK-7-20101013