001     40949
005     20180210133200.0
024 7 _ |2 DOI
|a 10.1016/j.ssc.2004.07.071
024 7 _ |2 WOS
|a WOS:000224867300011
037 _ _ |a PreJuSER-40949
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Wang, H.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Bismuth zinc niobate (Bi1.5ZnNb1.5O7) ceramics derived from metallo-organic decomposition precursor solution
260 _ _ |a New York, NY [u.a.]
|b Elsevier Science
|c 2004
300 _ _ |a 481 - 486
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Solid State Communications
|x 0038-1098
|0 5564
|v 132
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The preparation, microstructure development and dielectric properties of Bi1.5ZnNb1.5O7 pyrochlore ceramics by metalloorganic decomposition (MOD) route are reported. Homogeneous precalcined ceramic powders of 13-36 nm crystallite size were obtained at temperatures ranging from 500 to 700degreesC. The thermal decomposition/oxidation of the gelled precursor solution was chemically analyzed, TG/DTA, XRD, and SEM, led to the formation of a pure cubic pyrochlore phase with a stoichiometry close to Bi1.5ZnNb1.5O7 which begins to form at 500degreesC. The metallo-organic precursor synthesis method, where Bi, Zn and Nb ions are chelated to form metal complexes, allows the control of Bi/Zn/Nb stoichiornetric ratio on a molecular scale leading to the rapid formation of bismuth zinc niobate (Bi1.5ZnNb1.5O7) ceramic fine powders with pure pyrochlore structure. The powders were pressed into pellets and can be sintered at temperatures as low as 800-1000degreesC. Fine crystalline ceramics with the grain size in the range of 200-500 nm have been obtained at the sintering temperature of 800degreesC. The dielectric Properties in high frequency to microwave range were measured and discussed. (C) 2004 Elsevier Ltd. All rights reserved.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a BZN ceramics
653 2 0 |2 Author
|a chemical synthesis
653 2 0 |2 Author
|a dielectric properties
700 1 _ |a Elsebrock, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB22118
700 1 _ |a Schneller, T.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)131022
700 1 _ |a Yao, X.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.ssc.2004.07.071
|g Vol. 132, p. 481 - 486
|p 481 - 486
|q 132<481 - 486
|0 PERI:(DE-600)1467698-9
|t Solid state communications
|v 132
|y 2004
|x 0038-1098
856 7 _ |u http://dx.doi.org/10.1016/j.ssc.2004.07.071
909 C O |o oai:juser.fz-juelich.de:40949
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2004
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
970 _ _ |a VDB:(DE-Juel1)55948
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21